Turning toward a smart region by implementing a hybrid power system
Abstract
Distributed generation (DG) especially energy acquired from renewable energy sources (RES) plays a significant role in modern power sector due to high carbon emissions around the globe. Its emerging potential is feasible by implementing microgrids as they are beneficial for networks in terms of increasing flexibility and stability, providing frequency and voltage support, power factor compensation etc. This makes the investment into microgrid incorporating RESs attractive, while at the same time reducing overall investment in the grid. Higher cost and stochastic nature of intermittent RES are complications for the implementation and operation of such solutions. This paper will analyse economic feasibility of hybrid power system (HPS) implementation consisting of wind generator (WG), photovoltaic system (PVS), gas combined heat and power plant (CHP) and storage batteries. Each of the elements is optimized according to power demand and RES’s potential. Technical analysis of the grid integration, parallel operation of the system and the grid is analysed with an example of a real medium-voltage distribution network operating in Bosnia and Herzegovina by using quasi-dynamic load flow simulation of one-week time-period. Finally, different operating mechanisms and strategies will be proposed, following the minimal power form the grid premise to satisfy maximum usability of RES’s potential. It is shown that implementing such HPS would be beneficial in terms of both economy and, ecology, as well as in reducing energy losses. Besides, it will reduce power supplying costs and energy losses, as well as and secure better exploitation and utilization of natural renewable energy sources. These technologies positively affect power network by decreasing the risk of network-components overloading, better exploiting the power-generation facilities based on renewable resources and positively impacting voltage profiles. Similar places, situated on remote locations, may use this analysis as an example to follow, to reduce their costs of electricity, acquire more reliable and sustainable power supply, and embrace green future.
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Engineering Review

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Engineering review uses the Creative Commons Attribution-NonCommercial-NoDerivatives (CC-BY-NC-ND) 4.0 International License, which governs the use, publishing and distribution of articles by authors, publishers and the wider general public.
The authors are allowed to post a digital file of the published article, or the link to the published article (Enginering Review web page) may be made publicly available on websites or repositories, such as the Author’s personal website, preprint servers, university networks or primary employer’s institutional websites, third party institutional or subject-based repositories, and conference websites that feature presentations by the Author(s) based on the published article, under the condition that the article is posted in its unaltered Engineering Review form, exclusively for non-commercial purposes.
The journal Engineering Review’s publishing procedure is performed in accordance with the publishing ethics statements, defined within the Publishing Ethics Resource Kit. The Ethics statement is available in the document Ethics Policies.