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The Vehicle Routing Problem (VRP) is important in supply chain
management as it optimizes goods and services delivery to
customers, resulting in improved organizational productivity. This
study introduces an innovative hybrid methodology integrating the
Multi-Criteria Decision Making (MCDM) approach with Clarke
and Wright’s savings algorithm to tackle the capacitated vehicle
routing problem. In addition to the conventional aim of optimizing
truck routes, this strategy considers customer satisfaction. The
initial step involves clustering all customers through the utilization
of Clarke and Wright’s savings algorithm, which efficiently
organizes customers into groups based on their geographical
closeness. Following this, the hybrid Best-Worst Method (BWM)
and Ranking Alternatives For Similarity to Ideal Solution (RAFSI)
method are utilized to allocate the best routes and establish
customer prioritization. The major objective of this study is to
reduce overall transportation expenses while ensuring compliance
with vehicle capacity limitations, aiming to improve customer
satisfaction. The proposed approach seeks to balance cost-
efficiency and customer-centricity in vehicle routing by including
customer prioritizing and Clarke and Wright’s savings algorithm.
The effectiveness and practical application of the proposed
methodology are demonstrated through a case in the food industry.
The obtained results using the proposed methodology give a more
precise platform for decision-making and highlight its relevance
for enhancing supply chain performance and addressing the
intricate challenges associated with the capacitated vehicle
routing problem. The hybrid technique presented in this study
provides a comprehensive framework for effectively tackling the
intricate challenges associated with the capacitated vehicle
routing problem.
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1 Introduction

The Vehicle Routing Problem (VRP) stands as a significant and pressing challenge for logistics companies
in the present era. Extensive research has been dedicated to the optimization of vehicle routes and the efficient
scheduling of deliveries [1]-[3]. Dating back to 1959, scholars have delved into the intricacies of distributing
goods from a central depot to customers dispersed across different geographical locations. This particular
problem, often referred to as the paradigmatic case of the VRP, has garnered substantial attention from the
logistics community [4], [5].

The implications of solving the VRP extend far beyond individual logistics companies, impacting the entire
supply chain. Efficient vehicle routing is crucial in supply chain analytics since it improves the overall
effectiveness and responsiveness of supply networks [6]. Effective VRP solutions can lead to significant cost
savings, enhanced delivery times, and increased flexibility, all of which are essential for keeping a competitive
advantage in the market [7]. Furthermore, optimizing vehicle routes helps in better resource allocation,
resulting in a reduction of environmental impact by minimizing fuel consumption and emissions. By
integrating VRP solutions into supply chain management, companies may ensure more efficient operations,
from inventory management to last-mile delivery, thereby improving the end-to-end supply chain performance
[8].

Over the past few decades, a number of factors that have had an impact on the VRP have been introduced.
These factors include the variability in the capacities of vehicles, time-related constraints such as time windows
specified by customers, and the presence of multiple depots involved in the distribution process [5], [9]. These
characteristics and requirements can be converted into either constraints that shape the problem or variables
that define the problem. The aforementioned challenge presents a multifaceted issue that necessitates the
simultaneous consideration of various criteria and constraints, including the specific demands of each
individual customer. The variables and constraints that arise from real-life scenarios encountered by logistics
companies are converted by researchers into variants of the VRP [10]. Hence, the subsequent analysis pertains
to VRP variants that are associated with real-world scenarios. The primary goal, in both practical and
theoretical contexts, typically remains consistent: to minimize overall distribution costs while maintaining a
high level of distribution services [4].

A plenty of methods and approaches have been proposed and developed to tackle the VRP over the years
[11], [12]. These methods aim to optimize the allocation of vehicles and the sequencing of deliveries in order
to minimize costs, improve efficiency, and enhance customer satisfaction. One widely employed technique is
the heuristic algorithm, which involves using intuitive rules and strategies to construct feasible solutions.
Heuristics such as the Nearest Neighbor and Clarke-Wright algorithms have been widely adopted due to their
simplicity and ability to generate reasonably good solutions [13], [14]. Another prominent category of
approaches is metaheuristic algorithms, which encompass a range of optimization techniques inspired by
natural phenomena or problem-solving paradigms. The existing literature on the VRP has extensively explored
several methodologies, including genetic algorithms, ant colony optimization, and simulated annealing [2],
[15], [16]. In addition, mathematical models, such as integer programming, have also been employed. [17],
[18]. Additionally, recent advancements in technology and data availability have led to the emergence of data-
driven and machine learning-based approaches for VRP [19]. These methods leverage historical data, real-
time information, and advanced algorithms to make accurate predictions, generate efficient routes, and
dynamically adapt to changing conditions [20]. Neural networks, reinforcement learning, and deep learning
are examples of approaches used [21]-[23]. Method selection relies on several factors such as problem size,
desired solution quality, and data availability [24]. While methods such as heuristic algorithms, metaheuristic
approaches, mathematical models, and data-driven techniques have been employed to solve the Vehicle
Routing Problem (VRP), they often fail to incorporate multiple criteria into the models or prioritize customer
satisfaction, leaving notable research gaps [25], [26]. Therefore, it is crucial to develop hybrid techniques that
combine various approaches to effectively address the complexities of VRP and deliver more efficient,
customer-focused solutions.

In VRP models, the primary objective is often to minimize the distance, and the optimal route is determined
based on this criterion. It is possible for certain distributors to possess multiple criteria. However, the primary
challenge that persists is the existence of a substantial number of customers within a single route. Resolving
such issues with some MCDM techniques is intricate [27]. The use of VRP models into multi-criteria decision-
making methods is a potential avenue for considering additional criteria [28]. To ensure that the considered
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VRP system aligns with the specific requirements of the problem at hand, we employed a rigorous selection
process for the criteria used in the optimization process. These criteria were carefully chosen by domain experts
based on their expertise.

1.1 Main objectives

The objective of this research is to address the limitations of traditional VRP solutions by integrating
Multi-Criteria Decision Making (MCDM) approaches and customer prioritization into the vehicle routing
process [29], [30]. To achieve that, a hybrid methodology that combines the Clarke-Wright algorithm with the
Best-Worst Method (BWM) and Ranking Alternatives For Similarity to Ideal Solution (RAFSI) method. It is
worth noting that other modern ranking methodologies have also been developed in recent years [31]-[33].
These methodologies represent alternative approaches that could be explored for prioritization alternatives,
further enriching the field of ranking methods in MCDM frameworks.

1.2 Motivation

The VRP is a significant challenge for logistics companies, and optimizing vehicle routes and delivery
scheduling has received a lot of research attention. VRP involves distributing goods from a central warehouse
to customers located in different geographical areas. Over the years, various factors, such as vehicle capacity,
time windows, and multiple depots, have been introduced, giving rise to different forms of VRP. There are
various characteristics that are crucial to take into consideration. For example, the importance of the customer,
and the level of service necessary. Most research assumes that these criteria are equally important, and some
of them are difficult to measure.

In our study, a new hybrid methodology for vehicle route optimization is presented. In the hybrid model,
customers are clustered using Clarke and Wright’s savings algorithm. The weights of the criteria are calculated
using the BWM method. Next, the RAFSI approach is used to rank the customers. To weight the criteria,
various methods depending on the decision makers evaluations involve their subjective opinions [34]. These
approaches, represented by the Level Based Weight Assessment (LBWA), the FUIlI Consistency Method
(FUCOM), and the BWM techniques utilize experts’ individual perspectives. The LBWA method diminishes
the necessity for extensive pairwise comparisons (PCs) among criteria via a logical mathematical algorithm
[34], [35]. Unlike other approaches, LBWA remains manageable even with numerous criteria, simplifying
weight calculations [36]. It provides decision-makers with the flexibility to express preferences and resolve
inconsistencies logically, without relying on preset scales [37]. The FUCOM method was developed as an
approach for determining criteria weights, offering a structured process for multi-criteria decision-making [38].
This method effectively reduces redundancy in PCs, a common issue in subjective models for weight
determination [39]. FUCOM requires fewer pairwise comparisons than BWM for the same number of criteria.
However, FUCOM lacks validation studies confirming its effectiveness, a notable limitation highlighted in the
literature review. BWM, employing a comparison-based approach, demands less data and demonstrates
improved consistency in pairwise comparisons, making it a more efficient option [40]. Despite BWM’s
extensive applications, there’s a research gap in applying it to prioritize VRP criteria post-Clarke-Wright
algorithm. This gap is unfortunate as it could enhance BWM’s practicality. This study uses BWM to evaluate
criteria for optimal vehicle routes.

To rank the alternatives, various approaches have been applied over the past years. The Multi-Attributive
Border Approximation Area Comparison (MABAC) method was introduced as a widely applicable approach
for addressing real-world problems [41]. It ensures consistent outcomes despite measurement changes and
offers a simple algorithm for large-scale problems [42]. However, its reliance on the max-min formula may
introduce bias, indicating potential for improvement. The Measurement of Alternatives and Ranking according
to the COmpromise Solution (MARCOS) technique ranks options as a compromise solution and remains
robust with changes in attribute scales [43]. It provides reliable results in dynamic settings but relies solely on
linear normalization, limiting its handling of fuzzy or ambiguous information. The Multi Attributive Ideal-
Real Comparative Analysis (MAIRCA), using linear normalization, provides a stable solution with a simple
framework [44]. It excels in accuracy compared to other methods. Despite its identified advantages, the
method's reliance on exact values may overlook the nuances of human opinions and lacks the ability to handle
inherent ambiguity [45]. The Ranking of Alternatives through Functional mapping of criterion sub-intervals
into a Single Interval (RAFSI) method boasts three primary benefits: a simple algorithm for tackling complex
problems, an innovative data normalization technique, and resilience against rank reversal issues [46]. Despite
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its extensive application across diverse domains, there remains a dearth of research investigating its integration
with BWM and the Clarke-Wright algorithm to determine the optimal vehicle route based on multiple criteria.
This gap presents an opportunity to develop a novel integrated vehicle routing algorithm for route optimization.

1.3 Contribution

This research contributes to the advancement of the VRP field by offering a hybrid solution that combines
heuristic algorithm, multi-criteria considerations, and decision-making models. By integrating the Clarke-
Wright algorithm with the BWM-RAFSI model, the proposed approach enables logistics companies to
construct more efficient and customer-centric routes. The research provides a comprehensive framework for
solving complex logistics routing problems and offers insights into the integration of multiple methods for
optimizing the VRP. A vehicle cluster using the Clarke-Wright algorithm has been built in the first phase. The
BWM-RAFSI model is used in the second phase of the model to assess and evaluate the VRP's many criteria
and rank customers by importance. The BWM technique enables the methodical evaluation and prioritization
of criteria according to their relative significance. It considers both the most favorable and unfavorable aspects,
offering a more thorough evaluation. Through the utilization of the BWM approach, we successfully allocated
suitable weights to the criteria, thereby accurately representing their importance in the decision-making
process. The utilization of the RAFSI method enables the assessment of several alternative solutions by
considering multiple criteria. By integrating the Clarke-Wright algorithm with the BWM-RAFSI model, the
algorithm aims to overcome the limitations of traditional VRP solutions that focus solely on distance
optimization. Our approach enables logistics companies to consider diverse factors when constructing routes,
resulting in more efficient and customer-centric solutions.

2 Literature review

The VRP is a frequently studied topic in the transportation area and has garnered significant attention from
scholars. While the primary emphasis has been on identifying strategies to decrease vehicle mileage, additional
criteria have been introduced, including customer demands and service time benchmarks, so exacerbating the
complexity of the problem [47].

Vehicle routing algorithms have been increasingly important in supply chain analytics in recent years.
Studies have shown that improved VRP solutions have a positive impact on supply chain efficiency by
decreasing operational expenses and enhancing service levels. Researchers have investigated the use of VRP
in different supply chain contexts, such as goods transportation, e-commerce logistics, and reverse logistics
[48], [49]. For instance, dynamic routing models that account for real-time data and evolving conditions have
been proposed to enhance flexibility and adaptability in logistics operations [50]. Furthermore, the application
of MCDM methods in VRP models has shown potential in tackling the complex and dynamic nature of supply
chains, where multiple conflicting objectives must be considered [51]. Additionally, integrated decision-
support frameworks utilizing MCDM techniques are gaining traction, as they enable the simultaneous
optimization of cost, time, and environmental considerations [52].

Numerous studies have been undertaken to solve multi-objective VRP, as evidenced by past research.
Nevertheless, there is a limited number of studies that have employed MCDM techniques to address this issue
[53]. MCDM approaches are automated techniques used to choose a preferred solution from a range of
available options, even when there are conflicting criteria. MCDM approaches also enable the allocation of
alternative solutions to predetermined classes and their subsequent ranking in descending order [54].

Addressing the complexities of VRPs often requires integrating diverse objectives, such as cost efficiency,
service quality, and environmental sustainability. To this end, various approaches have been developed that
combine traditional optimization techniques with advanced frameworks for prioritizing multiple criteria. These
methods have been applied in areas such as waste collection, transportation logistics, and facility planning,
where real-world constraints like dynamic demands, capacity limitations, and accessibility are key
considerations [55],[56]. Recent innovations include hybrid models that integrate optimization algorithms with
decision-making frameworks, enhancing adaptability to real-time changes and multi-depot challenges [57],
[58]. By incorporating factors such as demand variability, environmental impact, and service levels, these
approaches provide decision-makers with robust tools to balance competing objectives and optimize logistical
performance [51], [59], [60].
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MCDM is a powerful analytical framework widely employed in various fields, including transportation
and logistics [60]-[62], and supply chain management [63], [64]. MCDM allows decision-makers to evaluate
and prioritize alternatives based on multiple criteria or objectives [65]-[67]. By considering various factors
simultaneously, MCDM facilitates informed decision-making processes and enables organizations to make
optimal choices [68].

The utilization of the MCDM approach has the potential to enhance the quality of VRP solutions [4]. Few
studies have combined MCDM and VRP algorithms.

3 Methodology

This research aims to leverage the strengths of both approaches to enhance decision-making in the context
of VRP. The methodology presented comprises three primary steps: customer clustering through the utilization
of the Clarke-Wright algorithm, the assignment of weights to the chosen criteria using the BWM technique,
and the ranking of customers inside each route (cluster) employing the RAFSI approach. The utilization of this
integrated methodology facilitates enhanced decision-making within the domain of VRP. Figure 1. shows the
suggested methodology framework.
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Figure 1. Methodology framework
3.1 Clarke-Wright algorithm

The Clarke and Wright savings method is a well-known VRP heuristic [69]. This approach works for
decision variables with an unknown vehicle count. It works for directed and undirected VRP instances. The
algorithm merges two possible routes (0, ... ... ,1,0) and (0,,...,0) into a single route (0,...,i,j,...,0), saving
distance S(i,j) which can be calculated as follows: S(i,j) = d(D,i) + d(D,j) — d(i,j).

The Clarke and Wright Savings algorithm solves VRPs sequentially. Following are the algorithms’ steps:

Step 1: Calculate the savings S(i, j) = d(D, i) + d(D,j) — d(i, j) for all pairs of customers i and j, where
d represents the distances between two customers. Note that S(i, j) is the saving in cost that would result if the
link (i, j) is made to produce the route (1, i, j, 1) instead of supplying i and j on two routes (1, i, 1) and (1, , 1).

Step 2: Order the savings in descending order.

Step 3: With the sorted savings list in hand, commence the process of creating larger sub-tours by linking
the appropriate nodes i and j, starting from the top of the list and progressing downwards. This iterative step
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within the Clarke and Wright Savings algorithm involves identifying pairs of nodes that can be combined to
form a single tour. By repeatedly executing this merging process, larger sub tours are gradually formed until a
complete tour is established. This sequential procedure ensures that the most beneficial node pairings are
selected, optimizing the overall routing solution.

Step 4: Upon considering each link generated during the sub-tour formation process, evaluate its feasibility
based on the constraints defined by the VRP. If a link satisfies the constraints and results in a feasible route, it
is appended to the solution. Conversely, if a link violates any of the constraints, it is rejected and not included
in the solution. This critical step within the Clarke and Wright Savings algorithm ensures that only valid and
permissible links are incorporated into the final routing solution, maintaining the integrity of the solution while
adhering to the constraints imposed by the VRP.

Step 5: Following the feasibility check and solution update in Step 4, proceed to the next link in the sorted
savings list and repeat Step 4. Continuously evaluate each successive link in the list, considering its potential
for creating a feasible route according to the constraints of the VRP. Iteratively applying Step 4 allows for the
exploration of additional merging possibilities and the potential inclusion of more links in the solution. This
process is repeated until no further links can be chosen, indicating that all feasible routes have been identified
and included in the final solution.

3.2 Determining weight coefficients using the BWM

The BWM method, has emerged as a novel MCDM technique aimed at addressing the limitations of
previous methodologies [70]. The primary distinctions between BWM and most contemporary MCDM
techniques lie in the reduced number of pairwise comparisons required by BWM and the higher degree of
reliability, consistency, logical coherence, and rationality exhibited by its results. This suggests that the BWM
model produces outcomes that are more robust and conclusive. The flow chart of the BWM method is depicted
in Figure 2 [38], [71], [72].

Step 1: Establish a set of decision criteria

¥

Step 2: Identify the best and worst criteria
¥

Step 3: Calculate the comparative reference between
the best and worst criteria.

¥

Step 4: calculate the optimum weights of the criteria.

Figure 2. BWM flowchart

3.3 RAFSI method

The RAFSI method was introduced as a novel addition to the repertoire of MCDM techniques, offering
innovative approaches to decision-making [46]. The initial decision matrix can be represented as follows for a
collection of m alternatives, A1, A2, ..., Am, each with unique weights wj, where j varies from 1 to n [73]:

nll n12 TR nln

n21 n22 TR TR n2n
N = .

N1 N2 e Opp

The criteria utilized in the analysis can fall into two categories: maximizing type (max) or minimizing type
(min). These categories distinguish between criteria that should be maximized for optimal outcomes and those
that should be minimized. The implementation of the model involves the following step-by-step procedure:
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Step 1: The initial step involves the establishment of clear definitions for both ideal and anti-ideal values. The
decision-maker establishes two values, denoted as a]}. and aNj , for each criterion. Here, a]}. represents the

ideal value of the criterion c, while a N, Tepresents the anti-ideal value of the criterion c,-
Step 2. The second step involves the mapping of elements from the initial decision matrix into intervals based
on the established criteria. Functions f, 4 (Cj) are established based on the predetermined ideal and anti-ideal

values. These functions are responsible for mapping the criterion intervals from the aggregated initial decision
matrix (N) to the criterion interval [,,n,]. Criterion functions are established for each criterion within the

givenset ¢, (j=L2,...n).

n;, -ny—n ‘n
~ n, —n 1. 1 N . b
_ b 1 J J
I (C./)— m + e)
I’l[/ —}’le }’llj —HN

where n, and n, represent the ratio that shows how much the ideal value is better than the anti-ideal value,
while . denotes the value of the i-th alternative for the j-th criterion from the initial decision matrix.

It is recommended that the optimal value should be at least six times superior to the anti-ideal value, or », =1
and n, =6 . However, the decision maker (DM) has the option to utilize alternative preferred values, such as

n, =1 and n, =9. This results in the creation of a standardized decision matrix S zl:slj:|m><n (i=L2,..,m,

J=12,..,n) in which all elements of the matrix are transformed to fit within the interval [5,, n,] .

Step 3: This step involves determining the arithmetic and harmonic means for the minimum and maximum
sequence of elements, denoted as nl and n2k, respectively. These means can be calculated using the
expressions (2) and (3).

m+
2
T=7 )
7_'_7
o My

Step 4: Form normalized decision matrix S= [E,,J (i=L2,..,m, j=12,..,n). Using expressions (4) and

(5), elements of matrix S are normalized, and transferred into the interval [0,1]:
a) for the criteria C; (j=1,2,...,n) max type:

if
i =— 4
Sij Y 4)
b) for the criteria C; ( j =1,2,...,n) min type:
~ H
j = 5
Sij s (%)

As a result, a new normalized decision matrix is generated, as demonstrated below -
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In this context, Sij € [0, 1] denotes the normalized elements of matrix S.

Step 5: Involves the calculation of the function parameters for the alternatives, denoted as V(Ai). Equation (7)
is employed to compute the criteria functions of the alternatives. The calculated value of V(Ai) is subsequently
employed to rank the alternatives in a descending order.

V(A4)=wisit +Wysi2 +.ct- W, Sin (7)
4 Results and discussion

This case study examines the operations of a food industry enterprise involved in the delivery of its products
through an in-house fleet. The primary data pertaining to the study was gathered from the company. The
provided data includes the geographical locations of customers and the corresponding quantities that are
demanded. The vehicles' capacity was also provided. The products are packaged in cartons, with each vehicle
capable of accommodating up to 80 cartons. The primary objective of the company is to minimize costs without
compromising on customer satisfaction. By delving into the intricacies of their operations, we aim to identify
potential areas for improvement and propose strategies that can enhance efficiency, reduce expenses, and
ultimately contribute to the enterprise's overall success in the competitive food industry. Table 1 displays the
coordinates of each customer in relation to the depot, along with their corresponding demand in cartons. Only
19 customers were included in this study. The customers were selected considering diverse characteristics,
including geographical distribution, varying demand levels, and logistical constraints such as accessibility and
time windows. Managing a substantial customer base with MCDM models can be somewhat challenging. For
instance, when employing the AHP model in case of having 19 customers and 6 criteria, a comparison must
be conducted for each customer based on these criteria. Therefore, a total of 6 tables are required to conduct a
pairwise comparison between 19 customers on each case. Experts will face challenges when they conduct this
task.

Table 1. Coordinates of the customers

Customer X Y Demand | Distance Savings
ID
Depot 0 0 -

1 2.0 3.0 20 7.1
2 2.5 1.0 30 4.6
3 5.2 6.4 16 4.2
4 2.7 2.6 21 3.9
5 2.1 4.7 15 3.9
6 1.9 1.2 20 3.9
7 1.0 4.0 2 3.6
8 5.2 33 11 1.2
9 2.3 1.7 12 3.5
10 4.2 4.1 19 33
11 3.1 3.2 9 3.2
12 0.5 25 23 3.2
13 1.2 4.2 21 3.1
14 52 4.1 15 3.1
15 2.7 2.3 3 3.1
16 1.7 33 14 3.1
17 1.3 1.3 9 3.0
18 5.7 5.8 28 2.9
19 3.6 1.6 10 4.0
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After the group of customers is clustered for the route by a distance-saving algorithm, the routing is created
for each group using nearest neighbor algorithm, and the results are displayed in Table 2. In this algorithm, the
shortest distances routes are selected.

Table 2. Generated clusters

Route No. Cluster
R1 19-17-7-14-18-3
R2 15-2-6-12
R3 11-10-5-13-9
R4 8-4-1-16

Table 3 provides a visual representation of the routes to each cluster and delivery quantity, which calculated
through the nearest neighbor algorithm.

Table 3. generated routes and delivered quantity.

Route No. Route Distance Delivered
Quantity
R1 D-19-17-7-14-18-3- 24.0 80
D
R2 D-15-2-6-12-D 10.0 76
R3 D-11-10-5-13-9-D 14.7 76
R4 D-8-4-1-16-D 13.7 66

In typical VRP, the primary consideration is usually the distance. Tables 2 and 3 show the formation of
the clusters as well as the determination of the vehicle routes and the distribution order. In this approach, only
one objective was considered, which is minimizing the traveling distance. No other criteria were considered.
In reality, there is a need to take into account other criteria when carrying out the distribution process.

Within this theoretical framework, distance is identified as a single criterion among the six that have been
put forward. The criteria were selected based on expert opinions, considering their practical relevance to
vehicle routing decisions. The six criteria that have been proposed are delineated in the following manner.

1. Distance (C1): The distance between the depot and each customer is an obvious factor to consider in the
VRP. This can be measured in terms of total distance or travel time.

2. Demand (C2): The amount of goods that each customer requires is another important criterion. Provider
would want to prioritize customers with higher demand to maximize the total load delivered.

3. Time window (C3): Many customers may have specific time window constraints within which they can
accept deliveries. Adhering to these time windows is crucial to ensure customer satisfaction.

4. Accessibility (C4): The ease of access to each customer's location could also be a factor to consider.
Customers located in congested or difficult-to-reach areas may require more time and effort to deliver to, and
so may be ranked lower.

5. Service level (C5): The level of service required by each customer could be another criterion. Customers
who require a higher level of service (such as faster delivery times or special handling) could be ranked higher.

6. Frequency (C6): The frequency of deliveries to each customer could also be a criterion. Customers who
require more frequent deliveries could be ranked higher.

To derive weight coefficients using the BWM method, one must first identify the most significant criterion (B)
and the least significant criterion (W).

In addition to the basic data collected regarding customer locations and demanded quantities, a group of
experts received two forms. The experts consulted were logistics professionals, including managers and
academic researchers with over 10 years of experience in operational decision-making. Consensus among their
opinions was achieved using the BWM, ensuring consistency and minimizing bias in the criteria selection
process. The first form aims to rank the criteria based on the BWM model. Experts were requested to select
the most important criterion and the least significant criterion in this form. Next, participants are instructed to
prioritize the most significant criterion in comparison to the other criteria. During the last stage, experts assess
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the worst criterion in comparison to the other criteria. Table Al in the Appendix displays the form that was
delivered to the experts. The second form that was delivered aimed to assess customers based on the suggested
criteria. Once these forms have been filled, the BO and OW vectors can be calculated and are presented in
Table 4.

Table 4. Evaluation vectors

Criteria

Best: Expert Worst: Expert
C3 evaluation C4 evaluation
Cl 1;2:3;2 Cl 8:8:8:8
C2 3:2:2;1 C2 7:7:8;6
C4 6;7;6;9 C3 8;8;8:8
C5 3:3:3;3 C5 4:4;3;5
Co 5:4:6;5 Cé6 2:2:2:2

The BO vector, as shown in Table 2, displays the expert preferences that indicate the superiority of criterion
C3 compared to the other criteria within the specified set. In order to assess the relative advantage between
criterion C3 and criterion j, ag; € [1,9] scale has been employed. A higher value on this scale indicates a
greater advantage of criterion C3 over criterion j. The a;y, € [1,9] scale has been utilized to depict the
preferences of experts in the WO vector, with a higher value on the scale indicating a greater advantage of
criterion j compared to the worst criterion C4.

By employing the arithmetic averaging formula x;; = (%) Y, x;, the average values of the BP and OW

vectors are derived subsequent to the calculation of the average BO and OW vectors. The computation of the
optimal weight coefficient values is performed using the criterion vectors of BO and OW. Table 5 shows the
final weights of the criteria. The table shows that the time window is the most important criterion. This means
that the distribution will not always be available, but rather will be limited to specific time periods. Distance
comes in second rank. Accessibility is in the last rank.

Table 5: Optimal criterion values — BWM

Criteria Weights Rank
C1 Distance 0.206 2
C2 Demand 0.206 3
C3 Time window 0.332 1
C4 Accessibility 0.036 6
C5 Service level 0.137 4
Co6 Frequency 0.083 5

The values of ¢ are obtained by solving the equation (8) from BMW, which are: S criveria = 0.527 ,

£, =0.0282

. The consistency ratio is determined by solving equation in the BMW method, using the
provided variables. The determination of consistency index values is not feasible in advance due to its reliance

on the collective judgments made by experts. The values of S are determined as provided by BMW. Given
that all values are CR<(.25, it can be concluded that the weight coefficients found are optimal.
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Upon the determination of criteria weights, the ranking of alternatives was carried out utilizing the RAFSI

method. To facilitate this process, an initial decision matrix was prepared, as depicted in Table 6.

Table 6. initial decision matrix

Customer C1 C2 C3 C4 (Y] C6
Al 69 58 57 84 89 91
A2 69 68 59 86 60 93
A3 52 79 76 92 72 87
A4 84 52 94 91 65 59
A5 6l 62 62 75 84 89
A6 57 51 56 54 87 70
A7 94 60 95 62 61 94
A8 67 65 57 86 55 65
A9 71 53 57 85 61 93

Al0 78 58 85 83 67 69
All 60 76 61 58 62 89
Al12 70 74 67 76 84 65
Al13 68 67 59 76 77 70
Al4 84 92 55 92 76 76
AlS 50 81 92 86 68 71
Al6 79 81 52 79 86 88
Al7 60 79 63 55 54 58
Al8 79 56 58 87 51 63
A19 85 63 95 62 72 78

The implementation of the RAFSI method can be facilitated by following the sequential steps outlined

below:

Step 1: The establishment of the ideal and anti-ideal values for the criteria has been determined by the decision-

makers (DMs).

a;, = [30, 100, 100, 100,100, 100]
ay, = [100, 40, 30, 50, 40,30]

Step 2: The clements within the matrix S have undergone normalization and transformation processes,
resulting in the development of a new matrix as shown in Table 7.
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Table 7: Normalized matrix

Cl C2 C3 C4 G5 C6
Al 0.54 0.73 0.58 0.76 0.73 0.77
A2 0.54 0.97 0.56 0.70 0.38 0.79
A3 0.40 1.24 0.39 0.53 0.52 0.72
A4 0.82 0.58 0.20 0.55 0.44 0.44
AS 0.46 0.83 0.53 1.02 0.67 0.74
Ab 0.43 0.56 0.59 1.63 0.70 0.55
A7 1.23 0.78 0.19 1.40 0.39 0.80
A8 0.52 0.90 0.58 0.70 0.32 0.50
A9 0.57 0.61 0.58 0.73 0.39 0.79
Al0Q 0.68 0.73 0.30 0.79 0.46 0.54
All 0.45 1.17 0.54 1.52 0.40 0.74
Al2 0.56 1.12 0.48 0.99 0.67 0.50
Al3 0.53 0.95 0.56 0.99 0.58 0.55
Al4 0.82 1.56 0.60 0.53 0.57 0.61
AlS 0.38 1.29 0.22 0.70 0.48 0.56
Al6 0.70 1.29 0.63 0.90 0.69 0.73
Al7 0.45 1.24 0.52 1.60 0.31 0.43
Al8 0.70 0.68 0.57 0.67 0.27 0.48
Al9 0.84 0.85 0.19 1.40 0.52 0.63

Step 3: Table 8 presents the criteria functions V(A1) of the alternatives, wherein these values are utilized for

the purpose of ranking the alternatives.

Table 8. Ranking of the studied customers

Customer V (A) Rank
Al 1.6552 9
A2 1.6508 10
A3 1.3489 18
A4 1.9870 5
A5 1.4886 16
A6 1.3978 17
A7 2.9184 1
A8 1.5629 13
A9 1.6373 12
Al0 1.7872 7
All 1.5264 14
Al2 1.7051 8
Al3 1.6401 11
Al4 2.3507 2
AlS 1.2655 19
Al6 2.1055 4
Al7 1.4985 15
Al 1.8734 6
A19 2.1546 3
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The present step of the procedure involves allocating customers to routes according to their priority
ranking. Every customer is assigned a route based on their priority ranking. To illustrate the clustered clients
for vehicle V1, we can refer to Table 3. The customer set consists of the numbers 19, 17, 7, 14, 18, and 3. Out
of the six customers under consideration, customer A7 has been assigned the highest priority rank of 1, with a
weight value of 2.9184. As a result, the assignment of A7 to vehicle V1 is made for the first customer.
Following this, A14 is assigned a priority rank of 2, which is the second-highest priority, and it is assigned a
weight of 2.3507. Subsequently, A19 is assigned a priority rating of 3, which is the third highest among the
options. This ranking is determined by a weight of 2.1546. At the conclusion, A3 exhibits the least significant
priority rank of 18, accompanied with a weight of 1.3489. Consequently, vehicle V1 is designated to serve
customer A3 as the ultimate assignment. The aforementioned procedure is iterated for each individual
customer, thereby guaranteeing their assignment to routes in accordance with their respective priority ranking.
The route utilizing the hybrid savings algorithm and MCDM approach is displayed in Table 8.

Table 9. Routes obtained using combined savings MCDM methods

Route No. | Route Distance | Delivered
Quantity
R1 D-7-14-19-18-17-3- | 28.3 80
D
R2 D-12-2-6-15-D 10.6 76
R3 D-10-13-9-11-5-D 17.4 76
R4 D-16-4-1-8-D 14.8 66

The total distance when utilizing MCDM approach in the VRP increased by 11% compared with the results
acquired using traditional models for scheduling vehicle routes. Using just savings approach, on the other hand,
just considers the distances. Using the hybrid savings-MCDM approach facilitates using a number of other
criteria. Despite having a 0.2 weight, the distance criterion made a significant contribution to the customers'
ranking. Figure 3 summarizes the difference between the two approaches.

Clarke and Wright's savings algorithm Hybrid VRP MCDM methods
0.8
£ 06
=
]
=
0.4
02 > I ]

c1 c2 c3 c4 Cco ce c1 cz2 c3 c4 C5 Cc6

Criteria

Figure 3. Summary of the two approaches

Compared to both standalone VRP models and hybrid VRP-MCDM approaches, the proposed methodology
provides an effective framework for addressing vehicle routing problems with multiple objectives. Standalone
VRP approaches, such as those using genetic algorithms [74], particle swarm optimization [75], and savings-
based heuristics [76], focus primarily on route optimization while minimizing computational complexity.
However, these methods often lack the ability to consider multiple criteria simultaneously, such as customer
prioritization or time windows. On the other hand, hybrid VRP-MCDM models, such as those combining VRP
with hybrid SWARA-COCOSO methods [77] or BWM-PROMETHEE-II methods to solve routing problems
[78], offer more comprehensive decision-making frameworks by integrating additional criteria [79]- [81].
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Compared to these approaches, our proposed hybrid model demonstrates a more balanced framework by
leveraging the Clarke-Wright algorithm for clustering and integrating BWM and RAFSI for multi-criteria
prioritization. This combination enhances the practicality of the methodology in addressing both routing
efficiency and customer satisfaction. The results highlight the robustness of our method in scenarios where
multiple conflicting objectives must be addressed simultaneously.

5 Policy and Managerial Implications

The findings of this study hold significant implications for both policymakers and logistics managers
operating in the transportation and supply chain domains.

From a policy perspective, it is crucial for policymakers to improve a regulatory framework that promotes
the implementation of efficient vehicle routing methods. It could be suitable to offer incentives to firms which
implement such approaches with the goal of enhancing cost effectiveness and customer satisfaction. These
regulations will incentivize corporations to engage in enhancing their mobility planning capabilities, leading
to positive outcomes for consumers and communities, such as less environmental impact and improved service
quality.

For logistics managers, this study provides a comprehensive framework for tackling the complexities of
the VRP. The integration of the Clarke and Wright savings algorithm with the BWM and RAFSI approach
offers a powerful decision-support tool. By simultancously optimizing route planning and customer
prioritization, managers can strike a balance between cost-efficiency and customer-centricity, leading to
enhanced organizational performance and increased customer satisfaction.

For decision-making in logistics and supply chain management, the research offers a transformative
framework by integrating customer prioritization and multi-criteria evaluation into vehicle routing. It enables
managers to prioritize high-value or time-sensitive deliveries, ensuring customer satisfaction while optimizing
routes for cost, delivery time, and environmental impact. The hybrid methodology could reduce operational
costs through minimized travel distances and fuel consumption, while addressing real-world complexities like
fluctuating demand and diverse constraints. Its flexibility could support dynamic adjustments and strategic
planning, such as identifying demand patterns or aligning operations with sustainability goals. Scalable and
adaptable across industries, this approach could empower efficient, customer-focused, and sustainable
decision-making, enhancing overall supply chain performance and stakeholder trust.

Furthermore, the flexibility of the proposed hybrid methodology allows for the incorporation of additional
criteria, such as delivery time windows, driver preferences, and environmental impact. This adaptability
empowers logistics managers to tailor the solution to the unique requirements of their respective organizations
and the evolving needs of their customer base.

The limitations of this study, namely the use of a relatively small number of customers per route, present
an opportunity for further research and development. Exploring the scalability of the proposed approach to
handle larger-scale routing problems would enable its application in more complex, real-world scenarios.
Addressing this limitation could yield valuable insights for both academics and industry practitioners,
ultimately driving the advancement of vehicle routing optimization in the transportation and logistics sectors.

6 Conclusion

This research addresses the limitations of traditional VRP solutions by integrating MCDM approaches
and customer prioritization into the vehicle routing process. It identifies six criteria and nineteen alternatives
to help policymakers and logistics managers make informed decisions. Employing a hybrid methodology that
combines the Clarke-Wright algorithm with the BWM and RAFSI methods, this study moves beyond existing
methods such as heuristic algorithms, metaheuristic approaches, mathematical models, and data-driven
techniques that often fail to incorporate multiple criteria into the models or prioritize customer satisfaction,
leaving notable research gaps. In our hybrid model, customers are clustered using Clarke and Wright’s savings
algorithm. The weights of the criteria are calculated using the BWM method. Next, the RAFSI approach is
used to rank the customers. While minimizing total costs remains a significant factor, long-term success in
logistics operations heavily relies on reducing customer discomfort and enhancing customer satisfaction.

This research makes several valuable contributions to the scientific community and society, including:
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The research introduces a hybrid approach combining the Clarke-Wright algorithm with the BWM-
RAFSI model to enhance the Vehicle Routing Problem (VRP) solutions.

The methodology enables logistics companies to construct routes that are both efficient and customer-
focused.

The research provides a comprehensive framework for solving complex logistics routing problems and
offers insights into the integration of multiple methods for optimizing the VRP.

The research evaluates multiple criteria and ranks customers by importance.

Unlike traditional VRP solutions focused solely on distance optimization, the approach incorporates
diverse factors, resulting in balanced and practical routing decisions.

Although significant contributions are made through this research, the use of a limited number of

customers per route is noticed as a limitation. The use of large numbers makes it difficult to use some MCDM
methods in the solution. In contrast, the use of MCDM methods allows different criteria to be added and taken
into account when solving the problem. As a future development for the research, some variables can be added
into the VRP model, such as the time window. The solution can be obtained using heuristic algorithms and
comparing the results when using a hybrid VRP-MCDM methods.
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