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 For environmentally friendly and sustainable power generation, it 

is essential to maximize the penetration of renewable energy in 

energy management systems. In order to maximize the integration 

of renewable energy sources into the grid, this article suggests a 

two-stage energy management strategy. The methodology 

combines day-ahead and real-time energy management 

using stochastic optimization techniques to efficiently utilize 

renewable energy sources while maintaining grid stability and 

dependability. The goal of the first stage, or day-ahead, is to 

minimize operational costs. To this end, a framework for scenario 

generation, such as Monte Carlo simulation, is used to generate 

multiple scenarios that consider the uncertainties related to the 

generation of renewable energy, demand patterns, and external 

factors. These scenarios facilitate an in-depth assessment of the 

integration of renewable energy sources by representing a variety 

of potential future states of the energy system. The efficiency of the 

proposed methodology is demonstrated through case studies. The 

total cost in rupees using the proposed technique has recorded 

12800, while the Gradient descent optimization as 12950 and 

13032 using Golden jackal optimization.   
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Highlights:  

1. In this work, a two-stage energy management strategy designed to enhance the integration of renewable 

energy sources in both microgrid (MG) and grid-connected systems. 

2. Addressed the uncertainties in photovoltaic (PV) and wind power generation. 

3. A cost-effective framework was proposed to minimize the total cost of the microgrid under the influence 

of uncertain sources. 
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Acronyms/Nomenclature: 
 

MG : Microgrid 

RES : Renewable energy sources 

PV : Photovoltaic 

GJO : Golden jackal optimization  

BESS : Battery energy storage system 𝑆𝑂𝐶 : State of charge 

DG : Distribution generation 

WT : Wind turbine 𝐹𝐶𝐺𝑟1𝑡  : Fuel cost of generator-1 𝐹𝐶𝐺𝑟2𝑡  : Fuel cost of generator-1 𝑎0, 𝑎1 and 𝑎2  : Cost coefficients 𝑃𝑟𝐺𝑟1𝑡  : Power generated by generator-1 𝑃𝑟𝑃𝑉𝑡  : Output power output from PV 𝑃𝑟𝑊𝑇𝑡   : Output power output from wind turbine system 𝑃𝑟𝐺𝑒𝑛𝑡   : demand for generation power at time ‘t’ 𝑃𝑟𝑙𝑜𝑎𝑑𝑡  : load demand at time ‘t’ 𝐶𝐷𝑆𝑡   𝐶𝐷𝑆𝑡  operational cost of the dispatchable sources  

 

1 Introduction 
 

The world is increasingly concerned about climate change because of increased greenhouse gas emissions 

[1]. The significance of environmental concerns has led to a greater emphasis on the integration of renewable 

energy sources (RES’s) into microgrids (MG’s) [2]. The MG’s are local energy systems that can operate 
independently or in conjunction with the main power grid. They characteristically consist of various energy 

resources like renewable sources (solar, wind), conventional generators (diesel, gas), and energy storage 

systems (e.g., batteries) [3]. Their primary aim is to deliver reliable and efficient energy to local loads while 

integrating renewable energy sources [4]. MG’s can function in three main operational modes: grid-connected, 

isolated (off-grid), and hybrid modes [5]. Effective energy management within these modes is critical to ensure 

reliable, cost-effective, and sustainable energy delivery [6]. Grid-connected MG’s need to manage energy 
flows to minimize costs, maintain grid stability, and handle contingencies such as voltage/frequency 

fluctuations or power quality issues [7]. Ensuring reliability is crucial in isolated mode, as there is no external 

grid to fall back on [8]. Effective management of energy storage, load demand, and dispatchable resources is 

important [9]. Energy storage systems play a crucial role in balancing supply and demand, especially during 

periods when renewable sources are unavailable [10]. When renewable generation (such as from solar panels 

or wind turbines) exceeds the immediate demand within the MG, storage systems can act as energy storage 

units [11]. This avoids curtailment of renewable energy and helps to store energy that can be used later for grid 

stabilization [12]. Smooth transitions between grid-connected and isolated modes are essential to avoid 

disturbances [13]. This necessitates advanced control and synchronization mechanisms to preserve grid 

stability, voltage, and frequency regulation during mode switching [14]. MG’s can participate in wholesale 
electricity markets by selling surplus energy or providing ancillary services (such as frequency regulation or 

voltage control) [15]. Optimizing operational costs enables MG’s to strategically interact with the market, 
maximizing revenue from energy sales and minimizing costs from energy purchases [16]. For MG’s, especially 
those that involve significant investments in infrastructure like renewable energy systems, storage, and control 

systems, optimizing operational costs is essential for ensuring a reasonable ROI. Lesser operational costs lead 

to quicker payback periods and augmented long-term savings, justifying initial capital investments [17]. MG’s, 
characterized by their ability to function both isolation and in conjunction with the main grid, offer a promising 

solution to improve the energy efficiency, reliability, and sustainability [18]. RES’s offers a cleaner, more 
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sustainable substitute to conventional fossil fuels; nevertheless, its incorporation into the grid introduces 

complexities due to its inherent unpredictability and uncertainty [19]-[22].  

The unpredictable nature of renewable energy generation, coupled with changing demand patterns, 

requires advanced energy management approaches to safeguard grid stability, cost-effectiveness, and 

reliability. Efficient management of these uncertainties that are associated with renewable energy generation, 

fluctuating demand patterns, and external factors is vital for maximizing the penetration of RES’s in the grid. 
Without adequate planning and real-time adjustments, the advantages of renewable energy integration may be 

undermined by operational inefficiencies, increased costs, and potential grid instability [22]-[24]. In this 

framework, maximizing the deployment of renewable energy in energy management systems is pivotal for 

promoting sustainable and environmentally friendly power generation [25]. To achieve this, it is essential to 

develop optimization techniques that effectively manage the uncertainties associated with renewable energy 

while maintaining a stable and reliable energy supply [26]. Energy management systems (EMS) in MG’s rely 
on real-time data and optimization algorithms to safeguard reliable and cost-efficient operations. This 

comprises forecasting demand, predicting renewable generation, and altering the operation of dispatchable 

sources and storage systems in real time [27]-[28].  
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Figure 1. Components of Microgrid. 

 

Linear and non-linear programming solves unit commitment and economic dispatch problems, whereas 

stochastic programming considers the uncertainties in RES generation and load demand [29]. Meta-Heuristic 

Algorithms also can solve both linear, non-linear and the problems with uncertainty which includes particle 

swarm optimization, genetic algorithm, and improved golden jackal optimization for handling complex, non-

linear problems [30]. Energy management in a MG is a complex problem demanding the incorporation of 

advanced technologies and strategies. The shift towards renewable energy, combined with the rise of smart 

technologies, offers openings to improve sustainability and resilience [31]. Nevertheless, challenges such as 

uncertainties, cybersecurity, and regulatory issues must be addressed to fully realize the potential of microgrids 

in modern energy systems [32]. Two-stage energy management in a MG is a robust method that divides 

operational results into day-ahead scheduling and real-time alterations. The day-ahead stage emphases on 

optimizing generation schedules, load allocations, and market participation based on forecasts of renewable 

generation, load demand, and electricity prices. However, the real-time stage adapts these decisions to actual 

conditions, addressing deviations caused by forecasting errors, unforeseen events, or system disturbances [33]. 

This method improves cost efficiency and reliability by safeguarding proactive planning while upholding 

flexibility to handle uncertainties [34]. The amalgamation of optimization techniques and predictive analytics 

in both stages significantly improves resource utilization and ensures the microgrid operates within technical 

and economic constraints. This paper proposes a two-stage energy management strategy designed to enhance 
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the integration of renewable energy sources in both MG and grid-connected systems. The first stage, or day-

ahead energy management, aims to minimalize operational costs by leveraging stochastic optimization 

techniques. To account for uncertainties related to renewable energy generation, demand, and external factors, 

scenario generation methods such as Monte Carlo simulation are employed. This allows for a comprehensive 

evaluation of potential future states, enabling more informed decision-making. The second stage focuses on 

real-time energy management, where the system adjusts dynamically to unforeseen deviations in generation 

and demand, ensuring the stability of the grid. By combining day-ahead planning with real-time adjustments, 

the proposed strategy enhances the utilization of renewable energy sources while maintaining the balance 

between supply and demand. The efficiency of the proposed methodology is demonstrated through case 

studies, which highlight its ability to increase renewable energy penetration, reduce operational costs, and 

maintain system reliability. This two-stage approach offers a robust framework for integrating renewable 

energy into modern energy systems, contributing to a more sustainable and resilient energy future. 

 

2 Modelling of Microgrid 

In MG systems, energy sources are typically classified into dispatchable or controllable and non-dispatchable 

or uncontrollable categories based on their capacity to be controlled and adjusted to meet demand. 

Understanding this distinction is crucial for improving energy management and preserving grid stability. 
 

2.1 Dispatch energy sources 

Dispatchable energy sources can be controlled and regulated by grid operators to meet load demand. These 

sources are flexible, meaning they can increase or decrease their output as needed, allowing for a reliable 

balance between supply and demand. In the following equations (1)- (4), 𝐹𝐶𝐺𝑟1𝑡 , 𝐹𝐶𝐺𝑟2𝑡  and, 𝐹𝐶𝐺𝑟3𝑡  are the fuel 

cost of generator-1, 2 and 3, respectively. The 𝑎0, 𝑎1 and 𝑎2 indicates the cost coefficients. 𝑃𝑟𝐺𝑟1𝑡 , 𝑃𝑟𝐺𝑟2𝑡  and 𝑃𝑟𝐺𝑟3𝑡  are the power generated by generator-1, 2 and 3. 

 𝐹𝐶𝐺𝑟1𝑡 = 𝑎0(𝑃𝑟𝐺𝑟1𝑡 )2 + 𝑎1𝑃𝑟𝐺𝑟1𝑡 + 𝑎2 (1) 

 𝐹𝐶𝐺𝑟2𝑡 = 𝑏0(𝑃𝑟𝐺𝑟2𝑡 )2 + 𝑏1𝑃𝑟𝐺𝑟2𝑡 + 𝑏2 (2) 

 𝐹𝐶𝐺𝑟3𝑡 = 𝑐0(𝑃𝑟𝐺𝑟3𝑡 )2 + 𝑐1𝑃𝑟𝐺𝑟3𝑡 + 𝑐2 (3) 

 𝐹𝐶𝐷𝑆𝑡 = 𝐹𝐶𝐺𝑟1𝑡 + 𝐹𝐶𝐺𝑟2𝑡 + 𝐹𝐶𝐺𝑟3𝑡  (4) 

                      

2.2 Non-dispatch energy sources 
 

Non-dispatchable or uncontrollable energy sources generate power based on environmental conditions, which 

cannot be controlled by grid operators. Their output is erratic and dependent on issues like weather, making 

them less dependable for constant energy supply. PV solar panels convert sunlight into electricity and are 

classified as a non-dispatchable energy source. The output of solar PV systems is determined by solar 

irradiance, which fluctuates based on time of day, weather conditions, and geographical location. Wind 

turbines produce electricity by harnessing wind energy, making them another non-dispatchable source. Like 

solar PV, wind energy production is subject to environmental conditions in specific wind speed and direction. 

Wind power can be extremely variable, dependent on local wind patterns, seasonal changes, and weather 

conditions. 

 

3 Problem Formulation 
 

This section discusses the objective function in which the objective is to optimize the total cost of the MG. Eq. 

(10) indicates the energy balance equation of the MG and Eq. (5-9) represents inequality constraint of the MG. 

It is necessary to optimize the economic dispatch of dispatchable generators by comparing real-time energy 

prices and MG operational cost by satisfying the constraints. 

 
 

3.1 Non-dispatch energy sources 
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The limits on the power generation i.e., minimum and maximum power outputs and battery charge and 

discharge limits are limited by inequality constraints. 𝑃𝑟𝑃𝑉𝑡 , 𝑃𝑟𝑊𝑇𝑡  are the output power output from PV and 

wind at time ‘t’ respectively.  
 0 ≤ 𝑃𝑟𝑃𝑉𝑡 ≤ 𝑃𝑟𝑃𝑉𝑡,𝑚𝑎𝑥

 (5) 

 0 ≤ 𝑃𝑟𝑊𝑇𝑡 ≤ 𝑃𝑟𝑊𝑇𝑡,𝑚𝑎𝑥
 (6) 

 𝑃𝑟𝐺𝑟1𝑡,𝑚𝑖𝑛 ≤ 𝑃𝑟𝐺𝑟1𝑡 ≤ 𝑃𝑟𝐺𝑟1𝑡,𝑚𝑎𝑥
 (7) 

 𝑃𝑟𝐺𝑟2𝑡,𝑚𝑖𝑛 ≤ 𝑃𝑟𝐺𝑟2𝑡 ≤ 𝑃𝑟𝐺𝑟2𝑡,𝑚𝑎𝑥
 (8) 

 𝑃𝑟𝐺𝑟3𝑡,𝑚𝑖𝑛 ≤ 𝑃𝑟𝐺𝑟3𝑡 ≤ 𝑃𝑟𝐺𝑟3𝑡,𝑚𝑎𝑥
 (9) 

                          

3.2 Equality constraints  
 

The generation and energy exchange should match the load demand which is governed by equality constraint. 

 𝑃𝑟𝑃𝑉𝑡 + 𝑃𝑟𝑊𝑇𝑡 + 𝑃𝑟𝐺𝑟1𝑡 + 𝑃𝑟𝐺𝑟2𝑡 + 𝑃𝑟𝐺𝑟3𝑡 - 𝑃𝑟𝐵𝐸𝑆𝑆𝑡 - 𝐸𝐸𝑥𝑐𝑕𝑡 = 𝑃𝑟𝑙𝑜𝑎𝑑𝑡  (10) 

 𝐸𝐸𝑥𝑐𝑕𝑡 = 𝑃𝑟𝐺𝑒𝑛𝑡 , 𝑃𝑟𝑙𝑜𝑎𝑑𝑡  (11) 

 𝐶𝐷𝑆𝑡  indicates the operational cost of the dispatchable sources and 𝑃𝑟𝐺𝑟1𝑡  is the power generation from 

generator-1, 𝑎0, 𝑎1 and 𝑎2 indicates the cost coefficients of generator 1. 𝑃𝑟𝐺𝑒𝑛𝑡 , 𝑃𝑟𝑙𝑜𝑎𝑑𝑡  indicates the generation 

and load demand at time ‘t’ respectively. Eq. (11) indicates the amount of energy exchange with the utility 
grid. Cost savings can be attained by storing energy, which assists in smoothing out variations in energy 

generation and utilization. Energy storage is used to store extra energy during off-peak hours and release it 

during peak usage. A battery energy storage system (BESS) can charge when electricity prices are small or 

when there is a surplus of renewable energy, such as during the day when solar generation is more. This is 

particularly important in grid-connected MG’s, where energy can be stored at off-peak times to be used during 

peak periods. 

 𝑆𝑂𝐶𝐵𝐸𝑆𝑆𝑡,𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝐵𝐸𝑆𝑆𝑡 ≤ 𝑆𝑂𝐶𝐵𝐸𝑆𝑆𝑡,𝑚𝑎𝑥
 (12) 

 𝑆𝑂𝐶𝐵𝐸𝑆𝑆𝑡 = 𝑆𝑂𝐶𝐵𝐸𝑆𝑆𝑡−1 + 𝛽𝑐𝑕𝑎𝑟𝑔𝑒𝑃𝐵𝐸𝑆𝑆𝑡−1 + 1𝛽𝑑𝑖𝑠𝑐𝑕𝑎𝑟𝑔𝑒 𝑃𝐵𝐸𝑆𝑆𝑡−1  (13) 

                               

Eq. (12) and Eq. (13) indicate the limits on state of charge of the battery and state of charge in the current hour 

respectively. 

 𝐶𝐸𝐸𝑥𝑐𝑕𝑡 = 𝐸𝐸𝑥𝑐𝑕𝑡 ∗ 𝐸𝑃𝐺𝑟𝑖𝑑𝑡  (14) 

 𝑇𝐶 =  𝐶𝐷𝑆𝑡 - 𝐶𝐸𝐸𝑥𝑐𝑕𝑡  (15) 

                           

By enhancing renewable energy integration, BESS reduce the microgrid’s reliance on fossil-fuel-based power 

generation. This leads to long-term environmental benefits, reduced emissions, and compliance with 

regulations for clean energy and sustainability targets. The BESS enables microgrids to smoothly transition 

between grid-connected and islanded modes. In the event of a grid disturbance or outage, BESS can ensure a 



K. R. K. V. Prasad et al.: Two stage energy management for maximizing renewable energy penetration 104 
________________________________________________________________________________________________________________________ 

 

seamless transition to islanded operation by immediately supplying the required energy to critical loads without 

disruption. BESS also plays a key role in maintaining voltage levels within the microgrid, especially in systems 

that integrate a significant amount of distributed generation (DG). By injecting or absorbing reactive power, 

BESS can help stabilize voltage fluctuations and support voltage control strategies within the microgrid. 

 

4 Proposed Methodology  
 

This section describes about the proposed two-stage scheduling methodology for energy management that 

combines day-ahead and real-time scheduling to optimize the operation of a MG and ensure efficient 

integration of renewable energy sources such as PV and wind turbine (WT) power. A flow chart of two-stage 

scheduling methodology is shown in Figure 2.  
 

4.1 Day-Ahead Scheduling 
 

- The process starts by introducing the day-ahead scheduling phase. 

- Read the load demand, day-ahead power generation from PV and WT. The system first reads the        

forecasted load demand for the next day and the predictable generation from PV and WT sources. These 

forecasts form the foundation for day-ahead energy planning. 

- Generate a preliminary population of candidate solutions. A set of candidates scheduling solutions is  

generated, typically using the proposed algorithm.  

- Each candidate solution is plaid to ensure it follows to the system’s operational limits, such as generation 
capacities, load requirements, and grid constraints. 

- Is power generation equal to load demand? 

Yes: If power generation from PV, WT, and diesel generator the load demand, there is no need for energy 

exchange with the grid, and the system proceeds with zero energy exchange. 

No: If there is a mismatch between power generation and load demand, energy will flow between the grid and 

the MG, either through imports (if demand exceeds generation) or exports (if generation exceeds demand). 

- The day-ahead operational cost is calculated based on the cost of operating the local energy sources, mainly 

fuel-based generators, plus or minus the cost of energy exchange with the grid. The energy exchange cost can 

vary dependent on grid pricing or market conditions. 
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Figure 2. Proposed methodology of two-stage scheduling. 

 

4.2 Day-Ahead Scheduling 
 

- The process starts by introducing the day-ahead scheduling phase. 

- Read the load demand, day-ahead power generation from PV and WT. The system first reads the forecasted 

load demand for the next day and the predictable generation from PV and WT sources. These forecasts form 

the foundation for day-ahead energy planning. 

- Generate a preliminary population of candidate solutions. A set of candidates scheduling solutions is 

generated, typically using the proposed algorithm.  

- Each candidate solution is plaid to ensure it follows to the system’s operational limits, such as generation 

capacities, load requirements, and grid constraints. 

- Is power generation equal to load demand? 

Yes: If power generation from PV, WT, and diesel generator the load demand, there is no need for energy 

exchange with the grid, and the system proceeds with zero energy exchange. 

No: If there is a mismatch between power generation and load demand, energy will flow between the grid and 

the MG, either through imports (if demand exceeds generation) or exports (if generation exceeds demand). 

- The day-ahead operational cost is calculated based on the cost of operating the local energy sources, mainly 

fuel-based generators, plus or minus the cost of energy exchange with the grid. The energy exchange cost can 

vary dependent on grid pricing or market conditions. 
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4.3 Real-time scheduling 
 

- Read real-time load demand, real-time WT and PV power: After the day-ahead schedule is set, the   system 

transfers to the real-time stage. The actual load demand and real-time generation from WT and PV are monitored. 

These values may fluctuate from the day-ahead forecasts due to variations in weather conditions and unforeseen 

changes in demand. 

- Real-time values are yet again checked to safeguard that they endure within the operational limits. 

- Is power generation equal to load demand? 

Yes: If real-time power generation matches real-time load, no imbalance occurs, and the system maintains zero 

energy imbalance. 

No: If there is an imbalance power, real-time adjustments must be made, including energy exchange with the 

grid (either import or export). 

- Any deviation from the day-ahead plan results in an imbalance cost. This cost is calculated based    on real-

time energy prices and the difference between planned and actual energy usage. 

- Additionally, the real-time operational cost reflects the cost of operating local generators to meet the updated 

demand. 

- Print imbalance cost and operational cost data: The system outputs the results of the real-time calculations, 

including both the imbalance cost and the final operational cost. 

- End of the Process 

- The process concludes once the real-time operational and imbalance costs are calculated, and the   energy 

management system has safeguarded that the balance between generation and load is achieved at minimal cost 

while observing system constraints. 

 

5 Results and discussion   
 

In this section, the impact of the proposed methodology on total cost minimization was assessed by using two 

case studies namely, IEEE- 33 bus system and IEEE- 18 bus system. The detailed results of both the test 

systems are presented in the subsequent sections. 
 

5.1 Case study 1 
 

The test system comprises of IEEE-33 bus system with 3 diesel generators, one PV and one WT. The maximum 

peak load on the system is 830.3 kW and the minimum load demand on the system is 144.4 kW. The day ahead 

load demand, generation and energy exchange with grid is shown in Figure 3. 
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Figure 3. Day ahead load demand, generation and energy exchange with grid. 

 

Figure 4 shows the power generation of two RES’s i.e., PV and WT over a 24-hour period. PV power remains 

constant during night-time (hours 0-5, 18-24), while fluctuating during daylight hours. The WT power shows 

consistent variability throughout the day, contributing meaningfully to the overall renewable energy output. 

BESS are crucial for enhancing the performance, reliability, and sustainability of MG’s. From load shifting 
and renewable energy integration to frequency regulation and backup power, the BESS delivers a wide range 

of functions that improve both grid-connected and islanded MG operations. By enhancing energy dispatch, 

improving power quality, and enabling participation in energy markets, the BESS contributes significantly to 

the overall efficiency and cost-effectiveness of MG’s, paving the way for a more resilient and cleaner energy 
future. Figure 5 indicates the dispatch schedule of the diesel generators. From the Figure 5, it is clear that the 
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power generation from generator 3 is less when compared with the other set of generators. Since, the 

incremental fuel cost of this generator is the highest. Figure 6 represents the total operational cost after 

application of DR over a 24-hour period.  

The operational cost reflects the cost related to running generation units and managing internal power 

systems within MG. The energy exchange cost shows the cost related to importing or exporting power from/to 

the grid, which is influenced by market conditions, grid tariffs, and energy demand. Figure 7 indicates the total 

cost of the MG. Figure 8 indicates the real-time load demand and energy exchange with the grid. Figure 9 

indicates the power generation from the PV and wind. During the initial hours (0-5 hours), the total cost is 

negative, indicating a period of net savings or profit, probably due to power being exported to the grid. This 

scenario is replicated by negative operational and energy exchange costs. The MG might be generating excess 

renewable energy, which is sold back to the grid, principal to a reduction in costs. Between hours 5 and 15, 

the operational cost remains comparatively stable, while the energy exchange cost oscillates as shown in Figure 

10. This period might reflect a balance between grid imports and internal power generation, with limited cost 

disparity. After hour 15, both the operational cost and energy exchange cost rise suggestively, peaking around 

hour 20 as represented in Figure 11. This growth could be due to higher energy demand, reduced availability 

of renewable energy, or reliance on more expensive energy imports from the grid. The varying costs suggest 

that the demand response mechanism has been implemented to minimize operational costs during peak demand 

periods. The demand response shifts load to lower-cost periods, reflected in the stable cost periods around 

hours 10-15. However, during certain periods, especially post-hour 15, the demand response strategy might be 

less effective due to higher grid dependency or reduced renewable generation, leading to higher operational 

and energy exchange costs. The overall trend demonstrates that integrating demand response mechanisms can 

effectively reduce costs during specific time periods (0-10 hours) is shown in Figure 12. However, the system 

faces challenges in maintaining low costs when renewable energy is scarce, and grid dependency increases 

during peak hours (15-23 hours). The obtained results suggest a well-balanced energy management strategy 

for a significant portion of the day, though potential improvements could be made to further reduce costs 

during high-demand periods, possibly by improving storage systems or enhancing the responsiveness to real-

time market prices. 

 

 
 

Figure 4. Power generation from PV and wind generator in the day ahead. 
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Figure 5. Day ahead dispatch schedule of diesel generators. 
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Figure 6. Day ahead fuel cost of diesel generators. 
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Figure 7. Cost cost of MG. 
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Figure 8. Real-time load demand, generation and energy exchange with grid. 

 

Figure 9. Power generation from PV and wind generator in real-time. 
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Figure 10. Real-time dispatch schedule of diesel generators. 
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Figure 11. Real-time operational cost of diesel generators. 

5.2  Case study 2 

Detailed evaluation of various optimization methods has been presented in this section. In this case, an 

IEEE-18 bus system was considered for studying the impact of proposed methodology on TOC of the MG. 

The methodology’s focus on cost minimization in the day-ahead stage is an important aspect, as it could make 

renewable integration more economically feasible for grid operators. Figure 12 indicates the load demand 

profile of the IEEE-18 bus system. It is clear from the Figure 12, the load demand is having its peak at 

scheduling hours 19 and 20. The performance of the two-stage energy management methodology in large, 

complex grid setups versus smaller MG systems differs suggestively due to the scale, interdependencies, and 

uncertainty levels inherent in each scenario. In smaller MG’s, the methodology is compatible as it handles 

limited numbers of distributed generators, storage systems, and loads, with fewer constraints and simpler 

energy trading scenarios. Real-time adjustments are less computational, and day-ahead forecasting models can 

be more precise due to localized weather and demand patterns. This frequently leads to optimized cost 

management and reliable operation. In large, complex grid setups, the method must deal with a higher number 

of interrelated components, diverse renewable sources, fluctuating load types, and complicated operational 

constraints such as transmission losses, congestion, and regulatory necessities. The increased dimensionality 

of the optimization problem can lead to computational challenges, and the precision of forecasts may be 

condensed due to combined uncertainties over larger geographic areas. stochastic or scenario-based 

approaches for price uncertainties. This adaptability safeguards the model remains robust and valid under 

evolving regulatory and market conditions. 
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Figure 12. Load profile of the IEEE- 18 bus system. 

 

Figure 13. Renewable power generation of the system. 

 

Figure 14. Market clearing price of the system. 

 

Figure 15. Dispatch schedule of the proposed methodology. 
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Figure 16. Cost comparison of the MG. 

 

Figure 17. Cost comparison with the other optimization techniques. 

Figure 14 indicates the market clearing price of the system for the load demand shown. Figure 15 indicates the 

dispatch schedule of the controllable sources. Figure 16 indicates the operational cost comparison and energy 

exchange with the grid during 24-hour scheduling phase. Figure 17 indicates the cost comparison of the 

proposed methodology with the other optimization techniques. From the Figure 17 it is clear that the proposed 

two-stage methodology outperforms when compared to gradient descent, branch and bound, interior point 

optimization and golden jackal optimization. The model's sensitivity to the number of scenarios is a crucial 

factor in attaining accurate results while handling computational complexity. Increasing the number of 

scenarios enhances the illustration of uncertainties in renewable energy generation and demand patterns, which 

improves the robustness of the decision-making process. However, it also intensifies the computational burden. 

The optimal number of scenarios depends on the trade-off between computational efficiency and the desired 

accuracy. In general, scenario reduction methods such as K-means or principal component analysis are applied 

to condense the generated scenarios while preserving their diversity and statistical characteristics. The two-

stage approach can be efficiently adapted for various renewable sources with different levels of predictability, 

such as wind and solar energy. Each source has exclusive characteristics that effect how they are modeled and 

managed: PV is likely over short time frames but affected by weather conditions like cloud cover. Daytime 

patterns make day-ahead planning more precise. Whereas, wind Turbines has highly variable and influenced 

by factors like wind speed, which can fluctuate significantly over short periods and necessitates real-time 

adjustments. The two-stage methodology can include source-specific forecast error distributions. For instance, 

solar forecasts may rely on irradiance models, while wind forecasts may depend on statistical or physical wind 

models. Scenario generation can include probabilistic distributions tailored to each energy source, allowing 

for a more accurate representation of uncertainties. 

 

6 Conclusion  
 

The integration of RES’s is crucial for creating environmentally sustainable and resilient power networks. 

Besides, the variability and uncertainty accompanying with renewables, such as solar and wind, necessitate 

sophisticated energy management strategies. In this paper, the authors presented a two-stage energy 
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management approach that effectively addresses these challenges by merging day-ahead and real-time 

optimization techniques. In the day-ahead stage, stochastic optimization employing scenario generation, such 

as Monte Carlo simulations, captures the uncertainties in renewable energy generation and demand, enabling 

cost-effective scheduling. The real-time stage safeguards grid stability by dynamically adjusting to unforeseen 

deviations between forecasted and actual conditions, maintaining the balance between supply and demand. 

The proposed strategy boosts renewable energy penetration while minimizing operational costs and 

guaranteeing system reliability. Through case studies, such as IEEE-33 and IEEE-18 bus systems, the 

effectiveness of this approach is demonstrated. The total cost using the proposed technique has condensed to 

12800 rupees from 12950 by gradient descent and 13032 using GJO. 

Future Scope: 

The present study can be extended to a scenario where the inclusion of electric vehicles and micro-DC loads 

through battery packs is an add-on. 
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