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For environmentally friendly and sustainable power generation, it
is essential to maximize the penetration of renewable energy in
energy management systems. In order to maximize the integration
of renewable energy sources into the grid, this article suggests a
two-stage energy management strategy. The methodology
combines day-ahead and real-time energy management
using stochastic optimization techniques to efficiently utilize
renewable energy sources while maintaining grid stability and
dependability. The goal of the first stage, or day-ahead, is to
minimize operational costs. To this end, a framework for scenario
generation, such as Monte Carlo simulation, is used to generate
multiple scenarios that consider the uncertainties related to the
generation of renewable energy, demand patterns, and external
factors. These scenarios facilitate an in-depth assessment of the
integration of renewable energy sources by representing a variety
of potential future states of the energy system. The efficiency of the
proposed methodology is demonstrated through case studies. The
total cost in rupees using the proposed technique has recorded
12800, while the Gradient descent optimization as 12950 and
13032 using Golden jackal optimization.

Highlights:

1. In this work, a two-stage energy management strategy designed to enhance the integration of renewable
energy sources in both microgrid (MG) and grid-connected systems.

2. Addressed the uncertainties in photovoltaic (PV) and wind power generation.

3. A cost-effective framework was proposed to minimize the total cost of the microgrid under the influence

of uncertain sources.
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Acronyms/Nomenclature:

MG : Microgrid

RES : Renewable energy sources

PV : Photovoltaic

GJO : Golden jackal optimization

BESS : Battery energy storage system

Soc : State of charge

DG : Distribution generation

WT : Wind turbine

FCy : Fuel cost of generator-1

FCf,,p : Fuel cost of generator-1

ay, aq and a, | : Cost coefficients

Pria : Power generated by generator-1

Prfy, : Output power output from PV

Prir : Output power output from wind turbine system
Préen : demand for generation power at time ‘t’
Prlqa : load demand at time ‘t’

Chs Ck operational cost of the dispatchable sources

1 Introduction

The world is increasingly concerned about climate change because of increased greenhouse gas emissions
[1]. The significance of environmental concerns has led to a greater emphasis on the integration of renewable
energy sources (RES’s) into microgrids (MG’s) [2]. The MG’s are local energy systems that can operate
independently or in conjunction with the main power grid. They characteristically consist of various energy
resources like renewable sources (solar, wind), conventional generators (diesel, gas), and energy storage
systems (e.g., batteries) [3]. Their primary aim is to deliver reliable and efficient energy to local loads while
integrating renewable energy sources [4]. MG’s can function in three main operational modes: grid-connected,
isolated (off-grid), and hybrid modes [5]. Effective energy management within these modes is critical to ensure
reliable, cost-effective, and sustainable energy delivery [6]. Grid-connected MG’s need to manage energy
flows to minimize costs, maintain grid stability, and handle contingencies such as voltage/frequency
fluctuations or power quality issues [7]. Ensuring reliability is crucial in isolated mode, as there is no external
grid to fall back on [8]. Effective management of energy storage, load demand, and dispatchable resources is
important [9]. Energy storage systems play a crucial role in balancing supply and demand, especially during
periods when renewable sources are unavailable [10]. When renewable generation (such as from solar panels
or wind turbines) exceeds the immediate demand within the MG, storage systems can act as energy storage
units [11]. This avoids curtailment of renewable energy and helps to store energy that can be used later for grid
stabilization [12]. Smooth transitions between grid-connected and isolated modes are essential to avoid
disturbances [13]. This necessitates advanced control and synchronization mechanisms to preserve grid
stability, voltage, and frequency regulation during mode switching [14]. MG’s can participate in wholesale
electricity markets by selling surplus energy or providing ancillary services (such as frequency regulation or
voltage control) [15]. Optimizing operational costs enables MG’s to strategically interact with the market,
maximizing revenue from energy sales and minimizing costs from energy purchases [16]. For MG’s, especially
those that involve significant investments in infrastructure like renewable energy systems, storage, and control
systems, optimizing operational costs is essential for ensuring a reasonable ROI. Lesser operational costs lead
to quicker payback periods and augmented long-term savings, justifying initial capital investments [17]. MG’s,
characterized by their ability to function both isolation and in conjunction with the main grid, offer a promising
solution to improve the energy efficiency, reliability, and sustainability [18]. RES’s offers a cleaner, more
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sustainable substitute to conventional fossil fuels; nevertheless, its incorporation into the grid introduces
complexities due to its inherent unpredictability and uncertainty [19]-[22].

The unpredictable nature of renewable energy generation, coupled with changing demand patterns,
requires advanced energy management approaches to safeguard grid stability, cost-effectiveness, and
reliability. Efficient management of these uncertainties that are associated with renewable energy generation,
fluctuating demand patterns, and external factors is vital for maximizing the penetration of RES’s in the grid.
Without adequate planning and real-time adjustments, the advantages of renewable energy integration may be
undermined by operational inefficiencies, increased costs, and potential grid instability [22]-[24]. In this
framework, maximizing the deployment of renewable energy in energy management systems is pivotal for
promoting sustainable and environmentally friendly power generation [25]. To achieve this, it is essential to
develop optimization techniques that effectively manage the uncertainties associated with renewable energy
while maintaining a stable and reliable energy supply [26]. Energy management systems (EMS) in MG’s rely
on real-time data and optimization algorithms to safeguard reliable and cost-efficient operations. This
comprises forecasting demand, predicting renewable generation, and altering the operation of dispatchable
sources and storage systems in real time [27]-[28].

Wind
Power
generation the system

Fuel cell,
Micro
turbine

Storage

Diesel
generator

Figure 1. Components of Microgrid.

Linear and non-linear programming solves unit commitment and economic dispatch problems, whereas
stochastic programming considers the uncertainties in RES generation and load demand [29]. Meta-Heuristic
Algorithms also can solve both linear, non-linear and the problems with uncertainty which includes particle
swarm optimization, genetic algorithm, and improved golden jackal optimization for handling complex, non-
linear problems [30]. Energy management in a MG is a complex problem demanding the incorporation of
advanced technologies and strategies. The shift towards renewable energy, combined with the rise of smart
technologies, offers openings to improve sustainability and resilience [31]. Nevertheless, challenges such as
uncertainties, cybersecurity, and regulatory issues must be addressed to fully realize the potential of microgrids
in modern energy systems [32]. Two-stage energy management in a MG is a robust method that divides
operational results into day-ahead scheduling and real-time alterations. The day-ahead stage emphases on
optimizing generation schedules, load allocations, and market participation based on forecasts of renewable
generation, load demand, and electricity prices. However, the real-time stage adapts these decisions to actual
conditions, addressing deviations caused by forecasting errors, unforeseen events, or system disturbances [33].
This method improves cost efficiency and reliability by safeguarding proactive planning while upholding
flexibility to handle uncertainties [34]. The amalgamation of optimization techniques and predictive analytics
in both stages significantly improves resource utilization and ensures the microgrid operates within technical
and economic constraints. This paper proposes a two-stage energy management strategy designed to enhance
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the integration of renewable energy sources in both MG and grid-connected systems. The first stage, or day-
ahead energy management, aims to minimalize operational costs by leveraging stochastic optimization
techniques. To account for uncertainties related to renewable energy generation, demand, and external factors,
scenario generation methods such as Monte Carlo simulation are employed. This allows for a comprehensive
evaluation of potential future states, enabling more informed decision-making. The second stage focuses on
real-time energy management, where the system adjusts dynamically to unforeseen deviations in generation
and demand, ensuring the stability of the grid. By combining day-ahead planning with real-time adjustments,
the proposed strategy enhances the utilization of renewable energy sources while maintaining the balance
between supply and demand. The efficiency of the proposed methodology is demonstrated through case
studies, which highlight its ability to increase renewable energy penetration, reduce operational costs, and
maintain system reliability. This two-stage approach offers a robust framework for integrating renewable
energy into modern energy systems, contributing to a more sustainable and resilient energy future.

2  Modelling of Microgrid

In MG systems, energy sources are typically classified into dispatchable or controllable and non-dispatchable
or uncontrollable categories based on their capacity to be controlled and adjusted to meet demand.
Understanding this distinction is crucial for improving energy management and preserving grid stability.

2.1 Dispatch energy sources

Dispatchable energy sources can be controlled and regulated by grid operators to meet load demand. These
sources are flexible, meaning they can increase or decrease their output as needed, allowing for a reliable
balance between supply and demand. In the following equations (1)- (4), FC¢,1, FCE,, and, FCf,5 are the fuel
cost of generator-1, 2 and 3, respectively. The ay, a; and a, indicates the cost coefficients. Pr§,;, Pr§,, and
Prf,5 are the power generated by generator-1, 2 and 3.

FCfry = ag(Prér)? + a1 Pri, + a, (D
FCéyp = bo(Prér;)* + byPriy, + by ()
FCr3 = co(Prérs)? + c1Pris + ¢, 3)

FChs = FClpy + FClpy + FChya 4)

2.2 Non-dispatch energy sources

Non-dispatchable or uncontrollable energy sources generate power based on environmental conditions, which
cannot be controlled by grid operators. Their output is erratic and dependent on issues like weather, making
them less dependable for constant energy supply. PV solar panels convert sunlight into electricity and are
classified as a non-dispatchable energy source. The output of solar PV systems is determined by solar
irradiance, which fluctuates based on time of day, weather conditions, and geographical location. Wind
turbines produce electricity by harnessing wind energy, making them another non-dispatchable source. Like
solar PV, wind energy production is subject to environmental conditions in specific wind speed and direction.
Wind power can be extremely variable, dependent on local wind patterns, seasonal changes, and weather
conditions.

3 Problem Formulation

This section discusses the objective function in which the objective is to optimize the total cost of the MG. Eq.
(10) indicates the energy balance equation of the MG and Eq. (5-9) represents inequality constraint of the MG.
It is necessary to optimize the economic dispatch of dispatchable generators by comparing real-time energy
prices and MG operational cost by satisfying the constraints.

3.1 Non-dispatch energy sources
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The limits on the power generation i.e., minimum and maximum power outputs and battery charge and
discharge limits are limited by inequality constraints. Prj,, Prif are the output power output from PV and
wind at time ‘t’ respectively.

0 < Prh, < Pry"™* (%)
0 < Prifyr < Prygp®™ (6)
Prgi™ < Prény < Prgiy™ Q)
Primin < prt., < primex (8)
Prifin < pré., < Primex €))

3.2 Equality constraints

The generation and energy exchange should match the load demand which is governed by equality constraint.
PrIEV + PthVT + Prcgrl + PrGtTZ + PT£r3 * PrBtESS * Elgxch = Prl%ad (10)
Elgxch = PT‘éen - Prl%ad (11)

Chs indicates the operational cost of the dispatchable sources and Prf,, is the power generation from
generator-1, ay, a; and a, indicates the cost coefficients of generator 1. Prf,y,, Prf .4 indicates the generation
and load demand at time ‘t’ respectively. Eq. (11) indicates the amount of energy exchange with the utility
grid. Cost savings can be attained by storing energy, which assists in smoothing out variations in energy
generation and utilization. Energy storage is used to store extra energy during off-peak hours and release it
during peak usage. A battery energy storage system (BESS) can charge when electricity prices are small or
when there is a surplus of renewable energy, such as during the day when solar generation is more. This is
particularly important in grid-connected MG’s, where energy can be stored at off-peak times to be used during
peak periods.

t,mi t,
SOCgEest < SOCEggs < SOCgped (12)
t t-1 t—1 1 t—1
SOCggss = SOCggss + BehargePeEss + B PgEss (13)
discharge

Eq. (12) and Eq. (13) indicate the limits on state of charge of the battery and state of charge in the current hour
respectively.

CElgxch = Elgxch * Epcgrid (14)
TC = Chs+ CEL,.p (15)

By enhancing renewable energy integration, BESS reduce the microgrid’s reliance on fossil-fuel-based power
generation. This leads to long-term environmental benefits, reduced emissions, and compliance with
regulations for clean energy and sustainability targets. The BESS enables microgrids to smoothly transition
between grid-connected and islanded modes. In the event of a grid disturbance or outage, BESS can ensure a
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seamless transition to islanded operation by immediately supplying the required energy to critical loads without
disruption. BESS also plays a key role in maintaining voltage levels within the microgrid, especially in systems
that integrate a significant amount of distributed generation (DG). By injecting or absorbing reactive power,
BESS can help stabilize voltage fluctuations and support voltage control strategies within the microgrid.

4 Proposed Methodology

This section describes about the proposed two-stage scheduling methodology for energy management that
combines day-ahead and real-time scheduling to optimize the operation of a MG and ensure efficient
integration of renewable energy sources such as PV and wind turbine (WT) power. A flow chart of two-stage
scheduling methodology is shown in Figure 2.

4.1 Day-Ahead Scheduling

- The process starts by introducing the day-ahead scheduling phase.

- Read the load demand, day-ahead power generation from PV and WT. The system first reads the

forecasted load demand for the next day and the predictable generation from PV and WT sources. These
forecasts form the foundation for day-ahead energy planning.

- Generate a preliminary population of candidate solutions. A set of candidates scheduling solutions is
generated, typically using the proposed algorithm.

- Each candidate solution is plaid to ensure it follows to the system’s operational limits, such as generation
capacities, load requirements, and grid constraints.

- Is power generation equal to load demand?

Yes: If power generation from PV, WT, and diesel generator the load demand, there is no need for energy
exchange with the grid, and the system proceeds with zero energy exchange.

No: If there is a mismatch between power generation and load demand, energy will flow between the grid and
the M@, either through imports (if demand exceeds generation) or exports (if generation exceeds demand).

- The day-ahead operational cost is calculated based on the cost of operating the local energy sources, mainly
fuel-based generators, plus or minus the cost of energy exchange with the grid. The energy exchange cost can
vary dependent on grid pricing or market conditions.
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Figure 2. Proposed methodology of two-stage scheduling.

4.2 Day-Ahead Scheduling

- The process starts by introducing the day-ahead scheduling phase.

- Read the load demand, day-ahead power generation from PV and WT. The system first reads the forecasted
load demand for the next day and the predictable generation from PV and WT sources. These forecasts form
the foundation for day-ahead energy planning.

- Generate a preliminary population of candidate solutions. A set of candidates scheduling solutions is
generated, typically using the proposed algorithm.

- Each candidate solution is plaid to ensure it follows to the system’s operational limits, such as generation
capacities, load requirements, and grid constraints.

- Is power generation equal to load demand?

Yes: If power generation from PV, WT, and diesel generator the load demand, there is no need for energy
exchange with the grid, and the system proceeds with zero energy exchange.

No: If there is a mismatch between power generation and load demand, energy will flow between the grid and
the M@, either through imports (if demand exceeds generation) or exports (if generation exceeds demand).

- The day-ahead operational cost is calculated based on the cost of operating the local energy sources, mainly
fuel-based generators, plus or minus the cost of energy exchange with the grid. The energy exchange cost can
vary dependent on grid pricing or market conditions.
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4.3 Real-time scheduling

- Read real-time load demand, real-time WT and PV power: After the day-ahead schedule is set, the system
transfers to the real-time stage. The actual load demand and real-time generation from WT and PV are monitored.
These values may fluctuate from the day-ahead forecasts due to variations in weather conditions and unforeseen
changes in demand.

- Real-time values are yet again checked to safeguard that they endure within the operational limits.

- Is power generation equal to load demand?

Yes: If real-time power generation matches real-time load, no imbalance occurs, and the system maintains zero
energy imbalance.

No: If there is an imbalance power, real-time adjustments must be made, including energy exchange with the
grid (either import or export).

- Any deviation from the day-ahead plan results in an imbalance cost. This cost is calculated based on real-
time energy prices and the difference between planned and actual energy usage.

- Additionally, the real-time operational cost reflects the cost of operating local generators to meet the updated
demand.

- Print imbalance cost and operational cost data: The system outputs the results of the real-time calculations,
including both the imbalance cost and the final operational cost.

- End of the Process

- The process concludes once the real-time operational and imbalance costs are calculated, and the energy
management system has safeguarded that the balance between generation and load is achieved at minimal cost
while observing system constraints.

5 Results and discussion

In this section, the impact of the proposed methodology on total cost minimization was assessed by using two
case studies namely, IEEE- 33 bus system and IEEE- 18 bus system. The detailed results of both the test
systems are presented in the subsequent sections.

5.1 Case study 1

The test system comprises of IEEE-33 bus system with 3 diesel generators, one PV and one WT. The maximum
peak load on the system is 830.3 kW and the minimum load demand on the system is 144.4 kW. The day ahead
load demand, generation and energy exchange with grid is shown in Figure 3.

Day-ahead load demand, generation and energy exchange

2000 _|__JEnergy exchange with grid in kW [__] Total generation in kW [_] Total load demand in kW]

1500

et

-500

0 4 8 12 16 20 24
Time in hours

Load demand and generation in kW

Figure 3. Day ahead load demand, generation and energy exchange with grid.

Figure 4 shows the power generation of two RES’s i.e., PV and WT over a 24-hour period. PV power remains
constant during night-time (hours 0-5, 18-24), while fluctuating during daylight hours. The WT power shows
consistent variability throughout the day, contributing meaningfully to the overall renewable energy output.
BESS are crucial for enhancing the performance, reliability, and sustainability of MG’s. From load shifting
and renewable energy integration to frequency regulation and backup power, the BESS delivers a wide range
of functions that improve both grid-connected and islanded MG operations. By enhancing energy dispatch,
improving power quality, and enabling participation in energy markets, the BESS contributes significantly to
the overall efficiency and cost-effectiveness of MG’s, paving the way for a more resilient and cleaner energy
future. Figure 5 indicates the dispatch schedule of the diesel generators. From the Figure 5, it is clear that the



K. R. K. V. Prasad et al.: Two stage energy management for maximizing renewable energy penetration 107

power generation from generator 3 is less when compared with the other set of generators. Since, the
incremental fuel cost of this generator is the highest. Figure 6 represents the total operational cost after
application of DR over a 24-hour period.

The operational cost reflects the cost related to running generation units and managing internal power
systems within MG. The energy exchange cost shows the cost related to importing or exporting power from/to
the grid, which is influenced by market conditions, grid tariffs, and energy demand. Figure 7 indicates the total
cost of the MG. Figure 8 indicates the real-time load demand and energy exchange with the grid. Figure 9
indicates the power generation from the PV and wind. During the initial hours (0-5 hours), the total cost is
negative, indicating a period of net savings or profit, probably due to power being exported to the grid. This
scenario is replicated by negative operational and energy exchange costs. The MG might be generating excess
renewable energy, which is sold back to the grid, principal to a reduction in costs. Between hours 5 and 15,
the operational cost remains comparatively stable, while the energy exchange cost oscillates as shown in Figure
10. This period might reflect a balance between grid imports and internal power generation, with limited cost
disparity. After hour 15, both the operational cost and energy exchange cost rise suggestively, peaking around
hour 20 as represented in Figure 11. This growth could be due to higher energy demand, reduced availability
of renewable energy, or reliance on more expensive energy imports from the grid. The varying costs suggest
that the demand response mechanism has been implemented to minimize operational costs during peak demand
periods. The demand response shifts load to lower-cost periods, reflected in the stable cost periods around
hours 10-15. However, during certain periods, especially post-hour 15, the demand response strategy might be
less effective due to higher grid dependency or reduced renewable generation, leading to higher operational
and energy exchange costs. The overall trend demonstrates that integrating demand response mechanisms can
effectively reduce costs during specific time periods (0-10 hours) is shown in Figure 12. However, the system
faces challenges in maintaining low costs when renewable energy is scarce, and grid dependency increases
during peak hours (15-23 hours). The obtained results suggest a well-balanced energy management strategy
for a significant portion of the day, though potential improvements could be made to further reduce costs
during high-demand periods, possibly by improving storage systems or enhancing the responsiveness to real-
time market prices.
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Figure 4. Power generation from PV and wind generator in the day ahead.
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Figure 5. Day ahead dispatch schedule of diesel generators.
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Figure 9. Power generation from PV and wind generator in real-time.
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Figure 10. Real-time dispatch schedule of diesel generators.
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Figure 11. Real-time operational cost of diesel generators.

5.2 Case study 2

Detailed evaluation of various optimization methods has been presented in this section. In this case, an
IEEE-18 bus system was considered for studying the impact of proposed methodology on TOC of the MG.
The methodology’s focus on cost minimization in the day-ahead stage is an important aspect, as it could make
renewable integration more economically feasible for grid operators. Figure 12 indicates the load demand
profile of the IEEE-18 bus system. It is clear from the Figure 12, the load demand is having its peak at
scheduling hours 19 and 20. The performance of the two-stage energy management methodology in large,
complex grid setups versus smaller MG systems differs suggestively due to the scale, interdependencies, and
uncertainty levels inherent in each scenario. In smaller MG’s, the methodology is compatible as it handles
limited numbers of distributed generators, storage systems, and loads, with fewer constraints and simpler
energy trading scenarios. Real-time adjustments are less computational, and day-ahead forecasting models can
be more precise due to localized weather and demand patterns. This frequently leads to optimized cost
management and reliable operation. In large, complex grid setups, the method must deal with a higher number
of interrelated components, diverse renewable sources, fluctuating load types, and complicated operational
constraints such as transmission losses, congestion, and regulatory necessities. The increased dimensionality
of the optimization problem can lead to computational challenges, and the precision of forecasts may be
condensed due to combined uncertainties over larger geographic areas. stochastic or scenario-based
approaches for price uncertainties. This adaptability safeguards the model remains robust and valid under
evolving regulatory and market conditions.
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Figure 14 indicates the market clearing price of the system for the load demand shown. Figure 15 indicates the
dispatch schedule of the controllable sources. Figure 16 indicates the operational cost comparison and energy
exchange with the grid during 24-hour scheduling phase. Figure 17 indicates the cost comparison of the
proposed methodology with the other optimization techniques. From the Figure 17 it is clear that the proposed
two-stage methodology outperforms when compared to gradient descent, branch and bound, interior point
optimization and golden jackal optimization. The model's sensitivity to the number of scenarios is a crucial
factor in attaining accurate results while handling computational complexity. Increasing the number of
scenarios enhances the illustration of uncertainties in renewable energy generation and demand patterns, which
improves the robustness of the decision-making process. However, it also intensifies the computational burden.
The optimal number of scenarios depends on the trade-off between computational efficiency and the desired
accuracy. In general, scenario reduction methods such as K-means or principal component analysis are applied
to condense the generated scenarios while preserving their diversity and statistical characteristics. The two-
stage approach can be efficiently adapted for various renewable sources with different levels of predictability,
such as wind and solar energy. Each source has exclusive characteristics that effect how they are modeled and
managed: PV is likely over short time frames but affected by weather conditions like cloud cover. Daytime
patterns make day-ahead planning more precise. Whereas, wind Turbines has highly variable and influenced
by factors like wind speed, which can fluctuate significantly over short periods and necessitates real-time
adjustments. The two-stage methodology can include source-specific forecast error distributions. For instance,
solar forecasts may rely on irradiance models, while wind forecasts may depend on statistical or physical wind
models. Scenario generation can include probabilistic distributions tailored to each energy source, allowing
for a more accurate representation of uncertainties.

6 Conclusion

The integration of RES’s is crucial for creating environmentally sustainable and resilient power networks.
Besides, the variability and uncertainty accompanying with renewables, such as solar and wind, necessitate
sophisticated energy management strategies. In this paper, the authors presented a two-stage energy
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management approach that effectively addresses these challenges by merging day-ahead and real-time
optimization techniques. In the day-ahead stage, stochastic optimization employing scenario generation, such
as Monte Carlo simulations, captures the uncertainties in renewable energy generation and demand, enabling
cost-effective scheduling. The real-time stage safeguards grid stability by dynamically adjusting to unforeseen
deviations between forecasted and actual conditions, maintaining the balance between supply and demand.
The proposed strategy boosts renewable energy penetration while minimizing operational costs and
guaranteeing system reliability. Through case studies, such as IEEE-33 and IEEE-18 bus systems, the
effectiveness of this approach is demonstrated. The total cost using the proposed technique has condensed to
12800 rupees from 12950 by gradient descent and 13032 using GJO.

Future Scope:

The present study can be extended to a scenario where the inclusion of electric vehicles and micro-DC loads
through battery packs is an add-on.
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