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Object detection plays a crucial role in enhancing mobile
augmented reality (MAR) applications, but the computational
limitations of mobile devices and the dynamic real-world
environments pose significant challenges. Current literature often
falls short in proposing solutions that maintain both high object
detection accuracy and computational efficiency on mobile
platforms. This study proposes a novel framework that integrates
Knowledge Distillation (KD) and Unsupervised Domain
Adaptation (UDA) to address these issues. KD transfers
knowledge from a resource-heavy "teacher" model to a lightweight

"student" model optimized for mobile deployment, while UDA
enables the student model to adapt to real-world conditions
without labeled data. Our framework uses YOLOvS models, where
the student model, YOLOvSn, learns from the teacher model,
YOLOvS small, improving precision and maintaining efficiency.
Experiments on the VOC2007 and COCO datasets show that our
SKD-UDA net achieves 78.2% mAP at IoU 0.5 and 50.8% mAP at
IoU 0.5:0.95, outperforming the baseline YOLOv5n by 5.5% and
5.7%, respectively, without increasing the model size (1.9 MB).
This approach enhances accuracy and computational efficiency,
making it ideal for MAR applications. Our contributions advance
object detection in MAR, improving user interaction by increasing
detection accuracy, inference speed, and seamless integration of
digital and physical environments.
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1 Introduction

Augmented reality (AR) is a user-machine interaction technology that has recently gaining significant attention
[1-4][1-4]. With the prominence of mobile phones and edge devices, mobile augmented reality (MAR)
applications are increasing. Contrary to personal computer applications, a built-in camera capable of collecting
images in real-time is included in MAR applications despite their lower memory and processing power
compared to personal computers [5]. As a critical task in MAR, object detection has been a noteworthy
computer vision research field [6]. The primary research objectives are to design an object detection framework
that achieves high accuracy and computational efficiency while being suitable for deployment on mobile
devices within MAR applications. We hypothesize that: (1) integrating Knowledge Distillation (KD) and
Unsupervised Domain Adaptation (UDA) can enhance object detection accuracy on mobile platforms without
increasing the model size, and (2) existing models can be adapted to dynamic MAR environments without
additional labeled data. Despite advancements in deep learning, which have significantly improved object
detection model accuracy [7-10], these models are frequently too large for practicality in MAR environments
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[11]. Edge devices with limited memory and computational resources must maintain high accuracy and low
latency amidst changing conditions [12, 13]. Measurement is commonly carried out in the object detection
process in MAR applications in two aspects: 1) efficiency indicates the speed of an object’s recognition, which
is primarily affected by the model size placed in the MAR application; 2) robustness reflects the accuracy
when the model is used in different domains, such as rotation, scale, background, and lighting changes.
Therefore, designing an object detection model with a small size and high accuracy is imperative.

The rapid development of object detection techniques has led to the proposal of many detection models.
Most of these models yield high accuracy depending on the growing model parameters, such as Faster RCNN
[14], Relation DETR [15], CAFF-DINO [16], and others. With the development and widespread application
of transformer technology, more and more object detection models are using transformer technology to
improve the accuracy of the model. However, the model parameters are increasing. For example, Co-DETR
[17] with Swin-L as a backbone achieved 64.7 mAP on COCO dataset with 218 MByte parameters. FocalNets
[18] combined with FocalNet-Huge backbone, Focal-Stable-DINO achieved 64.8 mAP on COCO with 689
MByte parameters. Internlmage [19] achieved 65.4 mAP with 2180 MByte parameters. As shown above, every
improvement in model accuracy depends on an increase in model parameters. Due to the large number of
parameters in these models, they are difficult to deploy on mobile devices and, therefore cannot be used for
MAR applications. Although many model compression techniques can be applied to these large models, they
still cannot significantly reduce model parameters, which are too large for MAR applications. Knowledge
distillation (KD) [20-25] is a model compression technique that is used to transfer knowledge from an
extensive teacher network to a small network without risking performance [26, 27]. The KD is divided into
response-based knowledge, feature-based knowledge, and relation-based knowledge. From larger teacher
models to smaller student models, these knowledge types are transferred into logits outputs, middle feature
layers, and diagrams, respectively [28, 29]. Precisely, response-based knowledge [30, 31] shifts the knowledge
from the last logit outputs of the teacher model to the student model. However, the logits layer constantly
increases the loss functions on the training stage, which are composed of cross-entropy loss of boxes
classification, generalised intersection over union (GIOU) [32] loss of boxes regression, and distillation loss,
specifically the Kullback-Leibler Divergence (KLDiv) of teacher and student’s logits output. While response-
based knowledge is widely used in relatively simple tasks and has achieved satisfactory outcomes, its use in
object detection tasks would reduce the accuracy of the student model.

The knowledge of the feature-based model [33, 34] is transferred from the output of the intermediate layers
or the last layer, which includes a high proportion of parameters. Following the intermediate layer accounted
for a large proportion of the model parameters, feature-based knowledge could significantly reduce the model
size or improve efficiency. However, given the unequal intermediate layers of the teacher and student models,
selecting the hint layer from the teacher model to correctly coordinate the feature representations of the guided
layer from the student model is challenging [35]. Without an appropriate selection, the student network would
be excessively regularised, which decreases the accuracy of the student model. Response-based and feature-
based knowledge use either the logits of the last layer or intermediate layers as knowledge transfer from the
teacher to the student model. On the other hand, relation-based knowledge [36, 37] utilizes the outputs of any
layers that compress the parameters of each object detection module. This article proposes a response-based
KD method known as multitask loss fusion (MLF). The mean squared error (MSE) objective function
calculates the regression and identification of object boxes, while the KLDiv estimates the object classification
loss. To merge the three task losses, the sigmoid function will convert the object feature into an attention mask,
followed by multiplying this mask through task loss. Object detection in MAR scenarios is a challenge due to
the susceptibility of model accuracy to the environment, such as rotation, scale, background, and lighting
change, among others. Due to the requirement of the new domain’s adaptation and robustness in detection
accuracy, unsupervised domain adaptation (UDA) has been widely used in the detection model to mitigate the
gap between domains. Given that the source data is collected from different domains in real scenarios, multiple
domains adaptation [20, 38, 39] with a unified training framework is proposed to solve the issue of domain
shift. Subsequently, a generative and self-supervised domain adaptation method is suggested to manage the
poor performance of different domain data [40]. Traditional UDA models require either the collection of
images from the source domain and annotated images from the transferred target domain in advance or the
acquisition of the source domain model and target domain model to learn from different domains. Rapidly
changing and complex scenarios for real-time MAR applications make collecting labelled and unrecognized
target domain images difficult. Moreover, trained MAR object detection models are generally not open source,
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and obtaining models in real-time application scenarios is challenging. Therefore, proposing a UDA method
that does not rely on additional target domain labelled data and models in MAR applications is imperative.

The use of unsupervised image translators’ technique to generate an unlabelled artificial dataset has shown
significant improvements in domain adaptation. This is followed by using a dataset as a target domain dataset
to train the target domain model [41]. However, the existing methods require additional datasets due to the
challenges in collecting the target domain datasets in real industry scenarios. Labelling many images involves
time and labour costs, with the synthetic data showing a different distribution than actual data. A target domain
data-free UDA strategy known as target-data-free feature alignment (TFA), conducted in a teacher-student
structure, is proposed to solve this issue. The teacher model features are regarded as the target domain, while
the student model features are regarded as the source domain. Through this method, the TFA can maintain
each source image feature distinction and enhance the adaptation of multiple domains. In building a high-speed
and accurate object detection model in MAR applications. The subsequent sections of this paper are structured
as follows: Section 2 outlines the motivation behind this study, emphasizing the challenges in object detection
and the need for improved generalization across diverse datasets. Section 3 provides an extensive review of
related work, covering significant advancements in object detection, including You Only Look Once (YOLO),
KD, and UDA. Section 4 introduces the proposed framework for object detection, which enhances model
generalization by training student models to recognize consistent features across varied datasets, leveraging a
teacher network for knowledge transfer. Section 5 details the experimental setup, describing the standard
datasets and methodologies used. Section 6 presents the results, offering a comprehensive comparison with
existing frameworks. Section 7 delivers an in-depth discussion of the framework’s key features, advantages,
and limitations, along with recommendations for future research directions. Finally, Section 8 provides the
conclusion, summarizing the key contributions and the framework's impact on advancing the field of object
detection.

2 Motivation

Augmented reality (AR) is a user-machine interaction technology that has recently gaining significant attention
[1][1-4]. With the prominence of mobile phones and edge devices, mobile augmented reality (MAR)
applications are increasing. Contrary to personal computer applications, a built-in camera capable of collecting
images in real-time is included in MAR applications despite their lower memory and processing power
compared to personal computers [5]. As a critical task in MAR, object detection has been a noteworthy
computer vision research field [6]. The measurement of the object detection process in MAR applications [1,
5] is commonly carried out in two aspects [42]: efficiency indicates the speed of the recognition object,
primarily affected by the model size placed in the MAR application. On the other hand, robustness reflects the
accuracy of the model's use in different domains, including rotation, scale, background, and lighting changes.
With the transfer of the knowledge from the teacher model to the student model, the previous KD [20-24, 29,
33, 34, 36, 54-59, 66-68] methods focus on reducing the size of the student model without a sharp decline in
the accuracy of the teacher model and inability of managing the domain shift issue. To illustrate this point,
when the teacher model lacks different domain information, the student model would have no means of
learning. Despite the suggestion of various UDA object detection methods [38-41, 61-64, 69-71] to solve
domain shift problems, the target model remains vast and complex, which is unsuitable for MAR applications.
Moreover, traditional UDA models typically require either annotated target source data from different domains
or pre-trained target domain models, which may not be feasible for MAR applications. After surveying the
advantages and limitations of KD and UDA, a combination of these techniques was proposed to design a MAR
object detection model with a small size and high domain accuracy.

The main contributions of this paper include:

a) Integration of KD and UDA within the object detection pipeline, a novel application not widely explored
before, which enables the suggestion for the training of a detection model with a small size and high
generalization ability on new datasets;

b) A multi-tasking loss fusion (MLF) mechanism, which encourages the promotion of each task;

¢) A teacher-student architecture for online learning that improves domain adaptability without the need
for additional labeled data, a major limitation in existing approaches.
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3 Related Work
3.1 You Only Look Once (YOLO)

You Only Look Once (YOLO) is a neural network-based algorithm that performs object detection in real-time.
It was first proposed in 2015 and has been updated several times with versions such as YOLOvS5 [43], YOLOV6
[44], and YOLOv7 [45], with YOLOvVS8 [46] being the most recent one. Unlike other object recognition
algorithms that scan the input image multiple times [47, 48], YOLO achieves high speed by splitting the input
image into a grid of cells and identifying the objects in each cell. It directly regresses the bounding box
coordinates and class probabilities from the image pixels [46]. It also uses a single convolutional neural
network to predict multiple bounding boxes. YOLO revolutionized the field by converting the object detection
problem from classification to regression. YOLOvV6, YOLOv7, and YOLOVS obtain higher detection accuracy
than YOLOVS, but their model size is largely increased. Using the Nano model as a reference, the sizes of
YOLOvVS, YOLOv6, YOLOvV7, and YOLOVS are 1.9 MB, 4.7 MB, 72.1 MB, and 3.2 MB, respectively. As
the data shows above, the model size of all versions of YOLO is more significant than that of YOLOvS. This
reduction in inference speed and increase in memory usage can make it difficult to deploy on mobile devices
for MAR applications. YOLOv5 Nano (YOLOv5n) is the most miniature model in the YOLOvVS5, YOLOV6,
YOLOv7, and YOLOVS families, designed for edge and IoT devices [49-51]. It is less than 2 M bytes in model
size and has a 45 millisecond CPU inference speed and a 45.7 mAP50 score on the COCO validation dataset.
This makes it ideal for MAR applications, as it balances speed and accuracy.

The YOLOVS object detection framework consists of a feature extract layer (backbone), a neck, a detection
head layer, and a loss function. The network of CSPDarknet [52] with SPP neck and PANet [53] are employed
as the backbone and detection head, respectively. The neck connects the backbone and the head. It comprises
three convolution layers that predict the location of the bounding boxes (X, y, height, width), the scores, and
the object classes. The YOLOVS algorithm employs a feature extraction process to generate relevant data from
input images, which is subsequently utilized by a prediction system to accurately identify and classify objects
within the image, delineating their boundaries with bounding boxes. The YOLOvVS5 algorithm employs a
sophisticated loss function that combines objects, class probability, and bounding box regression scores to
identify and classify objects within an image accurately. Specifically, YOLOvS has utilized Binary Cross-
Entropy with logits loss function to calculate the loss for class probability and object score, while the location
loss is determined using the Complete Intersection over Union (CloU) loss. The object score measures the
likelihood of an object being present within a bounding box. In contrast, the class probability score indicates
the probability of an object belonging to a specific class. The bounding box regression score, on the other hand,
reflects the accuracy of the predicted bounding box concerning the ground truth bounding box. The goal of the
loss function is to minimize the discrepancy between the predicted and ground truth values for these three
scores. This is accomplished by calculating the squared difference between the predicted and ground truth
values for each score, summing them up to obtain a single value representing the total loss, and using this value
to update the model’s weights during forward propagation to enhance performance. During backpropagation,
the gradients of the loss function to each weight in the network are calculated. These gradients are then used
to update the network weights to minimize the loss function. This process is repeated for many training
iterations until the model converges to a good solution. Figure 1 summarizes the YOLOvS framework.

The blue arrow in Figure 1 represents the forward propagation, and the purple arrow represents the
backpropagation process. The orange represents the total loss function, composed of CloU loss [54] for
bounding box regression, BCE loss for objectness score, and BCE loss for class probability. The purple arrows
indicate that the parameters of each layer are updated by loss backpropagation. Furthermore, YOLOVS
comprises five different model configurations based on its model sizes, namely nano model (YOLOv5n),
small model (YOLOVSs), medium model (YOLOvS5m), large model (YOLOVS5I), and extremely large model
(YOLOvVS5x). Notably, YOLOVS5 has been noticed for its higher performance compared to YOLOv4 in terms
of precision and speed. It also achieves a state-of-the-art object detection algorithm [55, 56]. The loss function
of YOLOVS could be classified into three parts [68]: bounding box regression loss, object classification BCE
loss, and object confidence loss.

The main variables involved in the YOLOVS of the below formulas include:
i,j: These represent the coordinates of the bounding box, indicating the center of the object detected within the
image. In YOLOVS, these are normalized to the dimensions of the image.
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w,h: These variables represent the width and height of the bounding box, indicating the size of the object.
These values are also normalized to the image dimensions.

p- This is the confidence score for each bounding box, representing the likelihood that the detected object
corresponds to a particular class.

c: This variable represents the classification probability, which is the probability that the detected object
belongs to a particular class.

Eq (1) presents the total loss function of YOLOVS. Eqgs (2), (5), and (6) include the bounding box regression

loss, object classification BCE loss, and object confidence loss, respectively. In this case, )Lcoord , ﬂd(m, /1"00@

,and A . Tepresent the coefficient of box regression, object classification, no object, and object, respectively

that control the relative importance of each loss term. In the context of our proposed framework, these formulas
play a crucial role. The bounding box regression loss ensures that the bounding boxes are accurately predicted
in terms of both position and size, which is essential for high-precision object detection in MAR applications.
The object classification BCE loss helps the model accurately identify objects, which is important in
environments where multiple object classes need to be recognized reliably under varying conditions.Finally,
The object confidence loss enhances the robustness of the detection by improving the model's ability to
distinguish between object and non-object regions, crucial for real-time processing where false positives must

be minimized. When the anchor box at the coordinate (i, J ) contains ground-truth objects, the value IZ?j

amounts to 1; otherwise, the value amounts to 0. In Eq (3), b and 5% represent the prediction box and
ground-truth box, respectively. In Eq (4), w# , k¥ , W, and h represent the ground-truth box width, ground-

truth box height, prediction box width, and prediction box height, respectively. Based on Eq (5), p, (C) and
[3] (C) represent the category probability of the prediction object and the ground-truth category, respectively.

As for Eq (6), C; and Q, denote the confidence score and the intersection of the prediction boundary box and

ground-truth box, respectively.
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In our framework, the formulas are not just used to optimize the YOLOvVS model but are combined with the
knowledge distillation (KD) and unsupervised domain adaptation (UDA) strategies to further enhance the
model's accuracy, robustness, and computational efficiency. The KD loss, as part of the distillation process,
helps transfer knowledge from the teacher model to the student model, improving performance while
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maintaining a smaller model size. On the other hand, the UDA loss aids in adapting the model to new, unseen
domains without the need for additional labeled target domain data, ensuring that the model remains robust
across diverse MAR environments. Thus, the interaction between these variables and formulas within the
YOLOVS framework allows our proposed system to achieve the dual objectives of high accuracy and
computational efficiency, making it suitable for real-time object detection on mobile devices.

BCE loss + BCE loss =
loss
T

update
parameters
labeled - 3
—+»|| ¥
(—

input layer feature detection ._ ]

extract head
layer layer

loss
backpropagation

Figure 1. The YOLOVS object detection framework. The object detection total losses comprise CloU
regression loss [51], object classification binary cross-entropy (BCE) loss, and object identity BCE loss.

3.2 Knowledge Distillation (KD) for Object Detection

KD based on transfer learning [57] has been used for the shift of knowledge from a large teacher network to
a small student network for improvement in the performance and reduction of the size of the student model
[20-24]. Therefore, the student network is designed with fewer parameters or a shallow layer. It is also
trained by the labelled data and the larger model’s knowledge output. This article proposes online teacher
and student KD [58, 59] based on YOLOVS, the state-of-the-art detection algorithm. In line with this method,
Guo et al. [24, 60] suggested using an ensemble of the soft targets of all student models to reduce the domain
gap. This means that the outputs of multiple student models are combined to produce a more accurate
prediction. Meanwhile, Kim et al. [61] employed a feature fusion learning (FFL) module to combine and
generate meaningful feature maps of all the sub-networks online. This approach allows for integrating
information from multiple sources to improve the model's accuracy. Additionally, Zhang et al. [62]
introduced process-driven learning, which extends outside outcome-driven learning for augmented online
KD based on adversarial mutual learning. This approach uses adversarial training to improve the
performance of the model by forcing it to learn from its mistakes. Overall, these methods demonstrate how
KD can improve the performance of object detection models in various ways without adding additional
model parameters.

3.3 Unsupervised Domain Adaptation (UDA) for Object Detection

The UDA attempts to understand the domain-invariant representation to reduce the effect of domain shift and
improve the robustness in the accuracy of the new domain [63]. The domain adaptive object detection aims to
improve the generalization performance, which takes place in the prediction stage in many cases instead of the
model train stage. Yu et al. [64] suggested a semi-supervised UDA learning method to learn better
representations from cross-domains and reduce the content distribution gap. A weak self-training (WST) and
adversarial background score regularisation (BSR) module is applied to reduce domain shift. Specifically, the
WST diminishes the side effects of error pseudo labels, while BSP extracts the distinct features of domains
[65]. This approach helps improve the model's performance by reducing the negative impact of incorrect
pseudo labels and extracting features specific to the target domain. To overcome the negative transfer of
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features caused by adversarial training, VS et al. [66] employed global and category-aware domain adaptation
simultaneously, allowing the attributes to be learned by the discriminator. This approach helps overcome the
negative feature transfer caused by adversarial training. Subsequently, [67] addressed this issue by introducing
conditional adversarial learning, in which the learning strength of well-aligned and poorly aligned samples are
adjusted dynamically. This approach helps improve the model's performance by dynamically adjusting the
learning strength of samples based on their alignment with the target domain. Overall, these methods
demonstrate how UDA can improve the performance of object detection models in various ways.

4 Results and discussion

The Editor/Editorial Board may reserve the right to decide whether a paper is acceptable for publication, and
if necessary, may require changes to the content, length, or language. This article suggests a unified object
detection framework combined with KD and UDA. While the combination of these two techniques has been
widely applied in image classification and segmentation tasks, achieving notable success [20, 70, 75-77], their
application to object detection remains scarce. Object detection is a complex task, encompassing multiple
stages such as the backbone, neck, box regression, and box classification networks, which makes it challenging
to combine these components into a single, unified framework. To address this challenge, we propose an end-
to-end teacher-student online learning architecture that integrates both KD and UDA in a coherent manner,
optimizing the detection model for mobile deployment.

The loss function comprises KD loss, UDA loss, and object detection loss. Specifically, the KD loss
includes the following: object coordinate regression, object classification, and object identity, which are
subjected to Mean Squared Error (MSE) loss, Kullback-Leibler Divergence (KLDiv) loss, and MSE loss,
respectively. These losses ensure the distillation of knowledge from the teacher model to the student model in
terms of both object detection performance and feature presentation. Subsequently, the student model’s domain
adaptability is enhanced through the Multiple Kernel Maximum Mean Discrepancy (MKMMD) loss [78] as
part of the UDA loss. Although the MKMMD loss function adds complexity during training, it is not utilized
during the inference phase. As a result, the inclusion of the MKMMD loss function during training does not
increase the model's parameters at inference, ensuring that the inference speed remains unaffected. Unlike
traditional methods, in our framework, the student model’s features are regarded as the source domain, while
the teacher model’s features are regarded as the target domain [67]. This alignment forces the student model
to adopt the new domain features extracted by the teacher model. In this way, the student model learns to
generalize to new domains without requiring additional labeled target domain data, which is typically
challenging to collect in real-world industrial environments. By combining KD and UDA, the proposed
framework leverages the strengths of both techniques. KD helps the student model retain high accuracy despite
a smaller model size, while UDA facilitates domain adaptation without the need for additional labeled data,
making the framework robust in dynamic and resource-constrained environments like MAR applications. This
unified approach significantly improves both model performance and generalization, addressing the key
challenges of deploying efficient and accurate object detection models on mobile devices.

The key innovation in this approach lies in how the student and teacher models are aligned in terms of
domain adaptation: Contrary to previous works, where the source domain and target domain are often
interchanged or require additional labeled target domain data, in our framework, the student model features
are regarded as the source domain, and the teacher model features are regarded as the target domain. This
unique arrangement forces the student model to adopt new domain features extracted from the teacher model,
eliminating the need for additional labeled target domain data. This is particularly valuable in industry
environments where collecting labeled target domain data is both difficult and time-consuming. Overall, Figure
2 summaries the proposed framework of this study. The green, blue, and tangerine parts in Figure 2 are teacher
model (YOLOVSs) [55, 56] student model (YOLOvV5n) [55, 56] and loss function, respectively. The purple
arrows indicate that the parameters of the student model are updated by total loss backpropagation, while the
parameters of the teacher model are frozen during the training process. The total proposed framework loss
function comprises bounding box location loss, object identity loss, and object classification loss. The
bounding box location loss comprises MSE loss, MKMMD loss, and the original CIoU loss, representing the
KD loss, UDA loss, and bounding box regression loss of the original YOLOvS5n student model, respectively.
The object identity loss comprises MSE loss, MKMMD loss, and BCE loss, representing the KD loss, UDA
loss, and object identity loss of the original YOLOv5n student model, respectively. The object classification
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loss comprises KLDiv loss, MKMMD loss, and student BCE loss, representing the KD loss, UDA loss, and
object classification loss of the original YOLOvS5n student model, respectively. The integration of the KD and
UDA components is achieved by coupling KD-specific losses (e.g., MSE, KLDiv) with UDA-specific losses
(e.g., MKMMD), ensuring both knowledge transfer and domain adaptation during training. This design allows
the student model to learn from the teacher model's outputs while adapting to the new domain. KD ensures
that the student model closely mimics the output distributions of the teacher model (YOLOVSs). Losses like
MSE and KLDiv guide the student to replicate the teacher’s predictions, capturing both semantic and spatial
information. The UDA using losses like MKMMD, minimizes the domain shift between the source domain
(on which the teacher was trained) and the target domain (new dataset). This enhances the student’s ability to
generalize effectively across diverse, unseen datasets. By incorporating MKMMD loss in each of the three
total loss components, the UDA ensures the adaptation of student model features across domains while KD
ensures the student retains the high-performance traits of the teacher. This dual optimization allows the student
model to maintain high accuracy even in new domains.
The student model (YOLOv5n) achieves high generalization ability on new datasets while maintaining a small
computational footprint due to the following:

a) Efficient Model Architecture: YOLOvSn is designed to be lightweight, with fewer parameters
compared to YOLOVS5s, making it suitable for resource-constrained environments.

b) KD and UDA Integration: The joint optimization of KD and UDA ensures that the smaller student
model effectively learns domain-invariant features while retaining high predictive accuracy.

¢) Loss Decomposition: The carefully designed loss functions allow the student model to balance
performance across location, identity, and classification tasks, ensuring robustness even when trained on
limited or highly varied data.
This design allows YOLOvV5n to outperform its size-class competitors, achieving a superior trade-off between
model size and generalization performance. The integration of UDA ensures domain robustness, while KD
ensures efficiency in learning from the larger teacher model.

4.1 Knowledge Distillation (KD)

The proposed response-based teacher-student KD schema distills the output logits of the teacher and
student model. The teacher and student models are trained with YOLOvS5s and YOLOv5n configuration, then
the teacher model’s parameters are frozen. The student model updates its parameters through the total loss
backpropagation. Notably, the KD loss is an important component of a total loss, which consists of teacher
and student model object boxes regression MSE loss, object classification KLDiv loss, and object identify
MSE loss. Some similar works applied the MSE loss for regression or classification [27, 79] and the KLDiv
loss for classification [43, 69, 71]. In the case of the MLF, the roles of the proposed MLF are to calculate and
fuse KD loss. The MSE objective is to calculate the box's regression and object identification loss, while the
KLDiv is employed to calculate object classification loss. Eq (7) shows that to fuse and balance these three

bi - .
°” indicates teacher model

tasks, each task needs to multiply a balance factor represented by b. Where, z'-
object identify logits, z' states teacher model regression features, z* denotes student model regression
features, o' indicates teacher model object identify logits, o° represents student model object identify logits,
¢’ denotes teacher model object classification logits, and ¢° indicates student model object classification
logits. Furthermore, the 7E represents the mean value of each sample and 7 represents the temperature

scaling hyper-parameter. Following that, &, B , and } are hyper-parameters to balance each task weight.

LREG, log,, Las, and Ly, represent object regression loss, identify loss, classification loss, and total KD

loss, shown in Egs (8)-(11) respectively. In MLF, the MSE and KLDiv loss functions are employed to
effectively integrate KD loss function. To effectively combine these losses, each task-specific loss is weighted
by a balancing factor, represented by b. This weighting ensures that no single task dominates the optimization
process, allowing the model to learn all tasks concurrently. By introducing the balancing factor, the loss fusion
mechanism ensures that all three tasks—regression, identification, and classification—are optimized without
overemphasizing any single aspect. The factor is tuned to prevent imbalanced gradients, which could hinder
convergence. In summary, the integration of MSE and KLDiv loss functions, along with appropriate balancing
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factors, enables the model to effectively learn from the teacher model while adapting to new domains, leading
to improved performance and generalization.
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Figure 2. The proposed end-to-end online object detection framework. The KD loss comprises the MSE
loss and KLDiv loss, while UDA loss includes the MKMMD loss [79], and object detection loss consists of
the student model’s CloU regression loss [54], object classification BCE loss, and object identity BCE loss.

b = sigmoid (z’ - ) (7)

Ly = mean(||z'-2"||" *b) (8)

Loy, = mean(|[o' =o' || *b) 9)

Les = mean{rz *c! (r)*log%*bj (10)

Ly =a* L+ Lo +y* Ly, (11)

4.2 Unsupervised Domain Adaptation (UDA)

The equation should be written in the MathType Equation Editor and positioned in the middle of the single
text column. All equations should be numerated in brackets on the right side, as follows: Considering the real
industry scenario, the collection and distinction between different domain data are not possible. However, with
the model’s capability of memorizing and enhancing each domain feature that appears in the train datasets, the
generalisation ability in new or similar distribution datasets could be improved. Based on the article [67], it is
a joint source domain data with target domain data to extract different level features, which do not require
differentiation between source and target domains. Therefore, the student model features are regarded as low
order and source level, while the teacher model’s features are regarded as high order and target level. Besides,
additional target domain datasets are not required. An MKMMD loss [78, 80] is present between the student
and teacher model in implementing UDA loss. The MKMMD incorporates the learned feature representation



X. Zeng et al.: Enhancing object detection in mobile augmented reality: a novel framework integrating... 103

into a reproducing kernel Hilbert space (RKHS) to enhance the ability of a single kernel employed by the
maximum mean discrepancy (MMD) [80]. Furthermore, MMD [81-83] is the test statistic to determine whether
the two distributions are the same and widely used in UDA. By identifying the function in the RKHS, the mean
values of the two different distributions of the function are obtained. Subsequently, the mean dispersion is
calculated by creating a difference between the two mean values with a source domain. Moreover, the Gaussian
kernel function (RBF) is constantly used as the function. The two distributions are considered the same with
an adequately small mean dispersion. Otherwise, different distributions would be created. The MMD loss is
described as Eq (12).

MMD(DS,D,):%Zilk(z,f)—ﬁz‘,ilk(zj)ﬁ (12

Where, ])s and ]), represent the source and target samples, respectively, while N and M indicate the
number of the target and source domain samples, respectively. Furthermore, k () denotes the kernel function,

while z' and z® represent target and source features extracted by the neural network, respectively.

Subsequently, H denotes the RKHS through the Gaussian kernel. The MKMMD [5-7] is incorporates
multiple liner kernels to improve the representation ability of MMD. This article uses this function to improve
the student model's new domain adaptability. Contrary to other articles that employ a minimum of two domain

datasets, the teacher model logits ])[ are considered the target domain, while the student model logits DS are
regarded as the source domain. The MKMMD loss function is described as Eq (13):

LMKMMD(D\.,D,) :E(fK (Ds))_E(fK (Dt))H (13)

Where, f, () is the sum of feature maps extracted by multiple kernels. Meanwhile, Ds and Dt represent the

source and target detection logits at the end layer of the model, respectively as described as Eq (14).
K=" 2k st 420,30 2 1 uell2,...nf. (14)

Where L denotes the quantity of the kernel set, which is set to 3. The parameters A and k, representing the
weight and the magnitude of single gaussian kernel, were set to (1,0.5), (1,1), and (1,2), respectively.

4.3 Combination of KD and UDA

The total loss of SKD-UDA net is represented by lT comprises three parts: object detection loss, KD loss,
and UDA loss. Accordingly, the final loss of the proposed framework in this study is described as Eq (15).

Ly =™ Ly + 16 Ly + 6L gy (15)

Where, 44, tb,and L4 denote the trade-off parameters to balance the raw YOLOVS loss, KD loss, and UDA
loss. The student model was trained using LRAW, the original YOLOVS5 loss function, in addition to the KD

loss depicted in Eq. 11 and the MKMMD loss illustrated in Eq. 13. The £4 controls the weight of the raw

YOLOVS5 loss, which includes bounding box regression, object classification, and object confidence scores. A

higher 44 prioritizes standard detection tasks and ensures strong baseline performance on localization and

detection. The £4 balances the influence of KD loss, which transfers knowledge from the teacher to the student
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model. This loss refines the student’s predictions to match the teacher’s distribution, improving performance

on difficult-to-classify objects and enhancing overall accuracy. The £4 focuses on UDA by minimizing the

domain shift between the source (teacher-trained) domain and the target domain. A higher £4 emphasizes the
generalization capability of the model, particularly on unseen datasets. The trade-off parameters allow for

adaptive optimization. A high £4 ensures that the model retains the foundational object detection capabilities
of YOLOVS. A high £ strikes a balance by enabling effective knowledge transfer without overshadowing
domain adaptation. A low L4 provides sufficient domain adaptation without compromising detection and KD

objectives. Fine-tuning these parameters is essential. For example, an excessively high £4 may result in over-
adaptation to target domain features, thereby weakening detection performance on source-like data.

Conversely, a low £4 could impair the model’s ability to generalize effectively on new domains.

5 Results and discussion
5.1 Dataset

Extensive experiments were conducted to assess the proposed framework using the VOC2007 dataset [84] and
Microsoft COCO dataset [85]. The training and validation sets were employed for the model training, while
the testing set was employed for the model evaluation. Subsequently, the accuracy was measured by mAPO0.5
and mAPO0.5:0.95. Subsequently, the F1 score showed a positive correlation with mAP; in this case, a higher
F1 score would be more favourable. The efficiency was evaluated by the model weights' size and the CPU and
GPU speed. The ideal framework for MAR should present high mAP and F1 scores, a small model size, and
low latency on CPU and GPU.

5.2 Baseline Comparison

This research compared the proposed SKD-UDA net with the original YOLOv5n [54], the YOLOvS5n model
with KD, and the YOLOvSs [54]. Among them, the Nano model serves as the baseline in terms of model size,
model accuracy, CPU, and GPU inference speed. The results of the models are evaluated on the validation set
of the VOC2007 and COCO datasets. Furthermore, both the YOLOv5n with KD and the YOLOv5n with KD
and UDA shown in Table use a student-teacher framework, where the YOLOvSs is employed as the teacher
model while the YOLOv5n is used as a student model. Based on the definition of response-based knowledge,
a KD loss was incorporated at the end of the detector logits layer, defined in Eq (11). The proposed SKD-UDA
net, which is the YOLOvSn with KD and UDA, shows similarity to the YOLOv5n with KD in terms of the
structure of the student-teacher framework. The loss functions are conducted at the object's exact position,
location, and classification layers, as shown in Fig. 2. However, while the KD loss is incorporated at the end
of the detector logits layer of the YOLOv5n with KD as defined in equation (11), both MKMMD loss and KD
loss are incorporated at the end of the detector logits layer of the YOLOvS5n with KD and UDA, as defined in
Eq (15).

5.3 Implementation

In this research, the state-of-the-art YOLOvVS was employed as a base detection model. In this case, the pre-
trained checkpoint were loaded to initialize the model parameters, leveraging prior knowledge for enhanced
performance. The training image size was set at 640 pixels, providing a balance between computational
efficiency and detection accuracy, while mosaic augmentation, randomresizedcrop, flipping and domain
randomization were applied to increase dataset diversity and improve robustness.

The initial learning rate was set to 0.0033 and decayed linearly over 100 epochs to ensure stable
convergence while avoiding overfitting. The 7 of Equation (10) was set at 2.0, while the &, B, and } of

Equation (11) were set at 1.0, 5.0, and 1.0, respectively which empirically to balance the contributions of the
KD loss component. Specifically, 7 was chosen to smooth the teacher model’s probability distribution, aiding
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effective knowledge transfer, while # =5.0 was set higher to give more weight to critical loss components

for aligning the teacher and student outputs. Following that, 44, 44, and 4 Equation (15) were set at 1.0,
1.0, and 0.5, respectively, representing the weights of the object detection module, KD module, and UDA
module when the proposed framework was trained with object detection, KD, and UDA loss, determining to

prioritize object detection and KD objectives while moderately incorporating UDA. Apart from that, the 24,
£, and L4 of Equation (15) were set at 1.0, 1.0, and 0, respectively, used to exclude the UDA component.

The factors of the multitask loss fusion 44, 44, and 4 were determined through grid search, testing multiple

configurations to identify a setup that minimized training loss without causing instability. These parameters
were refined iteratively by observing validation performance and optimizing for generalization to unseen data.
The selection process involved a combination of empirical testing and domain knowledge, aiming to balance
the contributions of each loss term effectively and to ensure that the contributions of detection, KD, and UDA
losses were aligned with the objectives of the proposed framework. The code was represented by Pytorch [75].
The experimental platform used in this study is shown in Table 1.

Table 1. Experimental Platform.

Name Version
CPU 19-14900HX
GPU RTX2070Ti
Memory 32GB
Operating System Windows 11
Deep Learnin

Fraﬁlework ) Pytorchl 8

6 Results

A comprehensive evaluation assessed the impact of KD and UDA loss, yielding several notable findings as
summarized in Table 1 and Table 2. Particularly, as depicted in Eq 1, the YOLOv5n model was trained using
the original YOLOVS5 loss function, which includes bounding box regression loss, object classification BCE
loss, and object confidence loss. The YOLOvSn model with KD, utilized a teacher-student architecture. In this
setup, the KD loss comprises the MSE loss for object box regression, KLLDiv loss for object classification, and
MSE loss for object identification, as shown in Equation 11. The combination of KD and UDA (SKD-UDA),
illustrated in Equation 15, was trained using object detection loss, KD loss, and UDA loss. The UDA loss
corresponds to the MKMMD loss, as shown in Eq 13. The megabytes (M) were used to measure the size of
the model, and the millisecond (ms) was used to measure the speed of the CPU and GPU of RTX2070Ti. This
project involves deploying augmented reality applications on embedded devices, with the installation package
on mobile devices not exceeding 100M. Object detection, a component of the application's functionality, has
a model size constraint of 2M. Consequently, the YOLOvS5n has been chosen for final deployment, as the
model sizes of other options exceed 2M. Furthermore, the validation images were resized to 640 pixels. The
ablation studies of each framework using VOC 2007 dataset and COCO dataset are shown in Table 2 and
Table 3 respectively.

Table 2. Ablation Study of each framework Using VOC 2007 Dataset.
Training Methods ~ YOLOvS  YOLOvS5nwith  YOLOv5n with SKD- YOLOVS5s

n KD UDA UDA
Size (pixels) 640 640 640 640 640
mAdP™ 0.5 72.8 76.6 74.6 78.2 84.6
mAP"™ 0.5:0.95 45.1 48.1 46.9 50.8 58.5
Weights (M) 1.9 1.9 1.9 1.9 7.2

CPU Speed (ms) 46 46 46 46 99
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Speed of RTX2070Ti 4.6 4.6 4.6 4.6 5.0

Table 3. Ablation Study of each framework Using COCO Dataset.
Training Methods ~ YOLOv5  YOLOvS5nwith ~ YOLOv5n with SKD- YOLOVS5s

n KD UDA UDA
Size (pixels) 640 640 640 640 640
mAP" 0.5 45.7 48.2 47.1 49.6 56.8
mAP™ 0.5:095 28.0 30.7 29.9 32.8 37.4
Weights (M) 1.9 1.9 1.9 1.9 7.2
CPU Speed (ms) 46 46 46 46 99
Speed of RTX2070Ti 4.6 46 4.6 4.6 5.0

The ablation studies further highlight the contributions of each component, with the KD module boosting
accuracy on challenging samples and the UDA module enabling domain generalization. Notably, the proposed
SKD-UDA net outperformed the state-of-the-art YOLOv5n without introducing additional parameters to the
source model, demonstrating its efficiency in leveraging existing architecture. Moreover, the SKD-UDA
network surpasses the YOLOvS5s in terms of accuracy on some samples from the validation dataset.
Incorporating the KD loss into YOLOv5n resulted in a significant improvement of 3.8% in mAPO0.5 and 3.0%
in mAP0.5:0.95, reflecting the effectiveness of knowledge transfer from the teacher model. The inclusion of
MKMMD-based UDA specifically ensures robust performance on datasets with significant domain shifts,
where traditional models tend to falter. Additionally, the combination of KD and UDA in YOLOv5n led to a
substantial increase in mAPO0.5 from 72.8% to 78.2%, and mAP0.5:0.95 improved from 45.1% to 50.8%.
Despite its lightweight design, the SKD-UDA net exhibited mAP performance comparable to YOLOVSs, while
offering a smaller model size and faster execution speed on both CPU and GPU. Based on the results shown
in Table 1, the YOLOv5n with the KD method could compress the size from YOLOvS5s into YOLOv5n and at
the same time can improve the accuracy. The SKD-UDA showed higher accuracy than the sole KD method
without increasing the size of the Nano model. Additionally, the SDK-UDA showed a fast inference speed
(efficient) that cost 46 ms in CPU mode and 4.6 ms in the GPU of RTX2070 Ti. This efficiency gain is critical
for real-time applications and deployment on resource-constrained devices. The inference results of the four
different models on VOC 2007 dataset are shown in Figure 3. Figure 3(a) shows the result of the YOLOv5n
model, which only recognizes the object of sofa and fails to detect the two dogs. Figure 3(b) and 3(c) show the
results of the YOLOv5n model with KD and the YOLOvV5s model, respectively. Both can recognize the sofa
but fail to detect one of the dogs, and they also misidentify another dog as a cat.

The results shown in Figure 3(d) for the YOLOvS5n model with KD and UDA are encouraging. It indicates
that the UDA module has effectively transferred knowledge from the teacher model, enhancing the model’s
ability to detect the object class “dog.” This is a significant achievement, as it suggests that the model has
improved its generalization capabilities, allowing it to recognize and locate “dog” objects more accurately,
even in potentially new or varied data environments. Moreover, it shows that the proposed framework performs
on par with the teacher model in some particular cases. The inference results of the four different models on
COCO dataset are shown in Figure 4. The inference results presented are from the COCO dataset, which boasts
a larger image collection than the VOC2007 dataset. Figure 4(a) demonstrates the performance of the original
YOLOv5n model, which incorrectly identifies unrelated objects as balls. Figure 4(b) and 4(c) depict the
YOLOvV5n model enhanced with KD and UDA, respectively. These models outperform the standard Nano
model by not misidentifying unrelated objects as balls. Moreover, as depicted in Figure 4(d), the proposed
SKD-UDA net framework successfully corrects this error and enhances the object confidence score beyond
that of the KD and UDA models, even when the object is small and blurry. This demonstrates the SKD-UDA
module's exceptional capability in recognizing small and blurry objects. Its ability to outperform traditional
KD and UDA models in terms of object confidence scores is quite impressive. In contrast, Figure 4(e), which
shows the results from the YOLOvVS small model, erroneously identifies numerous irrelevant small blocks as
people. The proposed framework demonstrates a lower false positive rate compared to the teacher model, thus
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reducing the likelihood of erroneous detections. Figure 5 displays the Precision-Recall curves for each class
in the VOC2007 dataset, along with the average precision for each class.

The graph suggests that categories like ‘car,” ‘horse,” ‘bicycle,” and others exhibit relatively good
performance. In contrast, the ‘potted plant’ category underperforms compared to the rest. This could be
attributed to the difficulty in extracting useful features from the ‘potted plant’ category, resulting in decreased
accuracy. By addressing these challenges, we can aim to enhance the model’s precision and recall for the
‘potted plant’ category, thereby improving its overall accuracy. Figure 6 illustrates the evolution of several
metrics during the training and validation phases, including box loss, object loss, and class loss. It also presents
metrics such as accuracy, recall, mAPQ.5, and mAP0.5:0.95 after each epoch. A steady decrease in loss metrics
alongside improvements in accuracy, recall, and mAP scores is a strong indication that the model’s parameters
are well-configured and that it’s learning effectively from the training data. Keep monitoring these metrics, as
they will guide ours in making any necessary adjustments to the model or training process. Figure 7 present
the confusion matrix on the VOC 2007 dataset that highlight some common challenges in object detection
tasks, particularly in the context of a network like SKD-UDA. When objects such as ‘potted plant’, ‘chair’,
and ‘bottle’ share similar features with the background, it can indeed lead to a higher Probability of Missed
Detection (PMD). This is often due to these objects having less distinctive features or color patterns that blend
with their surroundings. Similarly, the difficulty in distinguishing between ‘cow’ and ‘sheep’ could be
attributed to their similar appearance in terms of shape, size, or coloration, which can confuse the network,
leading to misclassification. In such cases, improving feature extraction methods and employing more
sophisticated classification algorithms might help. Additionally, increasing the diversity and size of the
training dataset to include more varied examples of these objects could potentially enhance the network’s
ability to distinguish between them. By combining high detection accuracy with computational efficiency, the
SKD-UDA net establishes itself as a practical and effective solution for real-world object detection tasks,
outperforming state-of-the-art methods on key benchmarks. These results underline the framework’s ability to
meet the dual objectives of precision and speed, setting a new standard for lightweight and adaptive detection
models.

7 Discussion and Future Research Recommendations

In this research, the YOLOv5n model was employed as the student model due to the limitation of the memory
size of edge devices in the MAR scenario. After using the proposed SKD-UDA net, the mAP0.5 of the source
YOLOvV5n model improved from 72.8% to 78.2%, although the parameters of the Nano model did not increase.
The size of the proposed SKD-UDA net was 1.9 M, while the inference time was 46 ms on the CPU and 4.6
ms on the GPU. Given the model’s size and accuracy, using it in MAR applications with weak computation
ability and small memory were a simple task. However, an accurate real-time response was required.
Moreover, traditional response-based KD utilized the MSE loss function to calculate the logits of the teacher
and student models, regardless of the varying tasks.

This led to the student model being unable to learn from the teacher model’s label completely.
Theoretically, the KL divergence loss focuses on logit matching when 1 increases and label matching when t
goes to 0 [86], the T was defined in Eq (11). Given the complexity of object detection, which involves CloU
regression loss, object classification binary cross-entropy (BCE) loss, and object identity BCE loss, the MLF
module in the proposed framework tailored logits to different tasks by using specific loss functions. In
particular, the KD loss, UDA loss, and the original YOLOVS5 loss function were integrated within the teacher-
student architecture. For object classification, the KL divergence loss was chosen over the MSE loss, as KL
divergence better captures differences between two probability distributions, making it more suitable for
probabilities. The MSE loss, by squaring errors, produces very small changes in probability-based tasks,
hindering learning. Additionally, the KL divergence loss includes a temperature factor (t), which balances
logit matching and label matching. In experiments, the smallest loss value was achieved when 1 was set to 2,
preventing overfitting. The MSE loss was used in the MLF module for CloU regression and object identity
tasks, as it is more sensitive to object coordinates. Furthermore, the object identification probability served as
a multiplier to weigh the regression and classification task losses, significantly influencing the total loss
function.

Thus, the MSE loss was chosen for the object identity task due to its sensitivity and ability to help the
student model directly learn the teacher model’s logits. Contrary to the other UDA methods, the proposed
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SKD-UDA net did not require the target domain dataset, which was challenging to collect and distinguish from
the source domain where the teacher model is treated as target domain and student model is treated as the
source domain. Instead, the teacher model is treated as the target domain, and the student model is treated as
the source domain. The MKMMD is used as UDA loss that combines multiple kernels to measure the
difference between teacher and student models probability distributions. The MKMMD is better than the MMD
because it can use multiple kernels to capture more information about the distributions and make them closer.
The MMD measures the difference between two probability distributions based on their average
representations in a special space. But the MMD may not be able to handle the changes of class probabilities,
the shapes of the object, or the different modes of the data. The MKMMD can deal with these problems by
combining different kernels with different weights, which can match the distributions in different ways,
addressing challenges such as class probability variations, object shape differences, and different domain data
distributions. The MKMMD can also use a method to find the best weights for each kernel. Compared to a
single YOLOv5n model, the YOLOv5n model with KD surpassed the mAP0.5:0.95 by 3%. However, the MLF
module which is the combination of KD and UDA loss created a better result than the sole use of KD loss
where the mAP0.5:0.95 score improved by 2.7%, indicating that the MLF module was practical. With the large
memory size of the edge devices, it is suggested for the SKD-UDA net in future works to employ the YOLOVS5
large model as the teacher to improve the accuracy. Similarly, the small model could be employed as the
student for the same purpose. The proposed SKD-UDA net could also be applied to other object detection
frameworks, such as YOLOv4 , YOLOv6, YOLOv7 and YOLOvVS to improve the source model's accuracy
and inference speed. Therefore, designing a more accurate KD scheme and UDA loss function is important in
the future work. For example, one could first use a small model for distillation, then use a larger model for
distillation, and explore other UDA loss functions to improve the performance of our framework.

8 Limitations And Future Work

While the SKD-UDA net delivers significant improvements in accuracy and efficiency, its reliance on the
YOLOvV5n as the student model may limit its performance on more complex tasks. For edge devices with
larger memory capacities, future research could explore employing the YOLOVS large model as the teacher
model to further enhance accuracy while using small models as students to maintain efficiency. Additionally,
the SKD-UDA net could be extended to other object detection frameworks, such as YOLOv4, YOLOV6,
YOLOvV7, and YOLOVS, to improve both accuracy and inference speed across diverse applications.Future
work should also focus on designing a more accurate KD scheme and UDA loss function. For instance, an
approach involving iterative distillation, starting with a small model and progressively using larger models,
could yield better results. Furthermore, exploring alternative UDA loss functions to capture domain
discrepancies more effectively would enhance the adaptability of the framework. These directions present
promising opportunities to expand the capabilities of the SKD-UDA net.

9 Conclusion

In this article, SKD-UDA net object recognition framework based on YOLOvV5 was proposed to boost object
detection in MAR. The proposed framework improves the robustness in precision and decreases the final
model's size in MAR scenario for object detection. The SKD-UDA net, which has a 1.9M model size and is
smaller than YOLOv6, YOLOv7, YOLOVS, and models based on transformers, was selected as the final model
can work on edge devices with its very small size, fast speed, and good accuracy. Despite the small size of the
final model, it exhibited domain adaptation ability and robust feature representation ability gained by the
teacher model under the proposed framework. Notably, the proposed SKD-UDA net was suitable for MAR as
it met the requirements of MAR that included high accuracy and efficiency. The proposed SKD-UDA net also
presented important ideas for real-time object detection by improving precision and productivity in complex
applications, such as automated driving cars, object tracking, and face detection.
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Figure 3. Inference results of the four different models on VOC 2007 dataset. (a) Inference results
of YOLOvSn; (b) Inference results of YOLOvSn with KD, (c) Inference results of YOLOvS5n with
UDA; (d) Inference results of YOLOvSn with SKD-UDA; (e) Inference results of YOLOvSs model.
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Figure 4. Inference results of the four different models on COCO dataset. (a) Inference results of

YOLOvS5n, (b) Inference results of YOLOvSn with KD, (c) Inference results of YOLOvS5n with UDA;

(d) Inference results of YOLOvSn with SKD-UDA; (e) Inference results of YOLOvSs model.
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