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 This paper explores the use of several ensemble learning 
algorithms Gradient Boosting, XGBoost, LightGBM, Bagging, 
AdaBoost, and Voting Classifier on the CICIoT2023 dataset within 
the framework of Industrial Internet of Things (IIoT) and Intrusion 
Detection Systems (IDS). The main goal is to improve anomaly 
detection and predictive maintenance in smart manufacturing 
environments. The models' performance was assessed using key 
metrics such as precision, recall, accuracy, F1 score, and ROC 
AUC score, in addition to evaluating their training and prediction 
times. Results show that Bagging and Voting Classifiers achieved 
the highest accuracy and ROC AUC scores, making them highly 
effective for complex detection tasks. However, XGBoost and 
LightGBM demonstrated superior computational efficiency, 
making them suitable for real-time systems requiring fast 
prediction times. The findings indicate that ensemble learning 
techniques can significantly improve both the accuracy and speed 
of anomaly detection in IIoT systems, providing a robust 
framework for enhancing cybersecurity and operational efficiency 
in smart factories. 
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1 Introduction 
 

The advent of Industry 4.0 has revolutionized the manufacturing sector by introducing smart factories, 
which leverage the Industrial Internet of Things (IIoT) to enhance operational efficiency and decision-making 
[1], [2]. IIoT enables factories to connect vast networks of devices, sensors and actuators that collect, share, 
and analyze real-time data[3]. These innovations have provided significant advancements in areas such as real-
time monitoring, predictive maintenance, and operational optimization, thereby allowing industries to reduce 
downtime and increase productivity [4]. A critical benefit of IIoT lies in predictive maintenance, where 
machine learning models analyze historical sensor data to predict equipment failures before they occur. This 
proactive approach prevents unexpected breakdowns, minimizes downtime, and extends the lifespan of 
industrial equipment [5]. Furthermore, predictive maintenance reduces maintenance costs and mitigates the 
risk of catastrophic failures that can disrupt production lines. Another crucial application of IIoT is real-time 
anomaly detection, which involves monitoring operational data streams to detect irregularities that might 
indicate malfunctions or quality control issues [6]. For instance, anomalies in temperature, vibration, or other 
metrics can signal early signs of equipment wear or inefficiencies. However, the success of such systems 
depends heavily on the accuracy and reliability of the underlying machine learning algorithms. Despite these 
advancements, traditional machine learning approaches face significant challenges when applied to the vast 
and heterogeneous data generated by IIoT systems. These include computational inefficiency, poor scalability, 
and vulnerability to overfitting, particularly when dealing with high-dimensional or imbalanced datasets [7]. 
Additionally, the complex nature of IIoT data, which often includes a mix of continuous and categorical 
features, as well as missing values, exacerbates these limitations. Ensemble learning has emerged as a 
promising solution to address these challenges [8]. By combining the predictions of multiple models, ensemble 
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techniques leverage the strengths of individual algorithms to produce more accurate and stable predictions. 
This approach helps mitigate common issues such as overfitting or bias, making ensemble learning particularly 
suited for the complex environments of smart factories. Among ensemble learning methods, Gradient 
Boosting, Bagging, and Voting classifiers have demonstrated notable success. Gradient Boosting builds 
models sequentially, with each iteration correcting the errors of the previous one to minimize loss and enhance 
accuracy [9]. Bagging independently trains multiple models on different data subsets, reducing variance and 
improving generalization [10]. Voting classifiers aggregate the predictions of multiple models, producing a 
final prediction based on majority voting, which leverages the strengths of each contributing model [11]. While 
ensemble learning techniques have been widely adopted in domains such as finance, healthcare, and 
cybersecurity, their application to IIoT and smart manufacturing remains relatively underexplored [12]. Given 
the critical need for accurate, real-time decision-making in smart factories, ensemble learning presents an 
opportunity to optimize predictive maintenance and anomaly detection tasks.  

This paper addresses these gaps by demonstrating the potential of ensemble learning techniques in tackling 
key challenges in IIoT applications for smart manufacturing. Specifically, it evaluates the performance of 
advanced ensemble methods—such as Bagging and Voting Classifiers—for predictive maintenance and 
anomaly detection. The study highlights how these models achieve superior accuracy, reliability, and 
computational efficiency, making them suitable for real-time industrial applications. The results affirm that 
ensemble learning not only enhances detection capabilities but also provides robust, scalable solutions for 
next-generation industrial systems [13].  By leveraging advanced ensemble techniques, this work contributes 
a comprehensive framework for improving cybersecurity, operational resilience, and efficiency in smart 
factories. This framework underscores the transformative potential of IIoT-based applications and positions 
ensemble learning as a critical tool for advancing Industry 4.0 initiatives [14]. This paper is organized as 
follows: Section II reviews related works on machine learning and ensemble techniques in IIoT and smart 
manufacturing. Section III details the methodology, including dataset description, preprocessing, algorithms, 
and evaluation metrics. Section IV presents the results and analysis of the ensemble algorithms applied to the 
CICIoT2023 dataset. Section V concludes with key findings and future research directions. 

 
2 Related Works 
 

The application of machine learning and ensemble techniques in IIoT and smart manufacturing systems is a 
growing research field, with various studies focusing on improving anomaly detection, predictive maintenance, 
and decision support systems. Below is an organized overview of relevant works drawn from recent literature. 
In 2021, Yu-Hsin Hung presented an enhanced ensemble-learning algorithm specifically designed for 
predictive maintenance in the semiconductor and blister packaging industries. This model integrates adaptive 
boosted decision trees with neural networks to improve the accuracy of predicting equipment failures and 
product quality degradation. The approach achieved an impressive accuracy of 99.2% in blister packaging and 
97.4% in semiconductor manufacturing, highlighting its potential to significantly enhance predictive 
maintenance in industrial processes [15]. In 2023 Awotunde proposed an Ensemble Tree-Based Model for 
Intrusion Detection in IIoT networks, leveraging ensemble methods like XGBoost, Random Forest, and 
AdaBoost combined with chi-square feature selection. Tested on the TON_IoT datasets, the model achieved 
accuracies of 98.73% on the Fridge dataset and 98.83% on the Thermostat dataset, demonstrating the strength 
of tree-based models for cyberattack detection in IIoT environments [16]. In 2021, Shrivastav and Kumar 
developed an ensemble model that combines Random Forest (RF), Gradient Boosting Machine (GBM), and 
Deep Learning (DL) to enhance stock price prediction. When applied to a large stock market dataset, the model 
achieved a 99% accuracy rate, surpassing the performance of each individual model. While the study is 
centered on finance, the ensemble approach demonstrates its broader potential for effectively managing large, 
complex datasets in IIoT applications [17]. In (2024) Konatham presented a Hybrid CNN-GRU Model for 
Anomaly Detection in IIoT systems, focusing on edge computing environments. Their model achieved 96.41% 
accuracy, demonstrating the advantages of combining spatial and temporal features to improve detection of 
real-time cyber threats in IIoT networks [18]. In 2023 Lee developed a novel approach for Anomaly Detection 
Using an Ensemble of Multi-Point LSTMs. By employing LSTM networks and combining them in an 
ensemble model, they achieved high anomaly detection accuracy, with 95.87% accuracy on the MobiAct 
dataset and 97.66% accuracy on the SWaT dataset. This method highlights the strength of neural networks in 
processing time-series data for industrial applications [19]. In 2022, Naik conducted a comparative analysis of 
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machine learning algorithms for anomaly detection in IIoT environments. The study found that Random Forest 
consistently outperformed other algorithms across multiple datasets, achieving accuracy rates of up to 99% for 
detecting anomalies in IIoT systems. This research highlights the critical role of selecting the most suitable 
algorithms for effective anomaly detection in industrial settings [20]. Koo (2023) proposed a Double Ensemble 
Technique for Predicting Weight Defects in injection-molded products used in smart manufacturing. By 
combining bagging and boosting in a double ensemble, they achieved an accuracy of 97.98%, demonstrating 
improvements in defect prediction and product quality maintenance in smart factories[21]. In 2022 Hazman 
introduced IDS-SIoEL, an Intrusion Detection Framework for securing IoT-based smart environments. This 
framework leverages ensemble methods like AdaBoost and advanced feature selection techniques to achieve 
near-perfect detection rates, with 99.99% accuracy on the BoT-IoT dataset.  

The study emphasizes the role of ensemble learning in improving security in IoT systems[22].  Rodriguez 
and colleagues developed a prediction model for smart aquaponic systems using a combination of Bagging 
and Boosting Ensemble Techniques. The model was integrated into an autonomous IIoT-based aquaponic 
management system to optimize water quality for plants and fish. Key parameters such as dissolved oxygen, 
pH, and water temperature were monitored and processed using machine learning. The study showed that the 
bagging-based model achieved a test accuracy of 94.09%, while the boosting-based model improved this to 
95.23%, illustrating the effectiveness of ensemble learning in precision agriculture[10]. Kotsiopoulos (2020) 
explored the application of Machine Learning (ML) and Deep Learning (DL) in smart manufacturing and 
smart grids within the context of Industry 4.0. The study proposes a comprehensive Industrial Artificial 
Intelligence (IAI) architecture, integrating various ML and DL models, including Random Forest, SVM, CNN, 
and RNN, to optimize predictive maintenance, fault detection, and energy efficiency in industrial 
environments. The authors highlight the high performance of DL models in handling complex data but also 
note the challenges posed by computational costs and data requirements[23]. Maha Al-Sharif and Anas 
Bushnag, (2024) proposed an ensemble learning-based intrusion detection system (IDS) to enhance cloud 
security. Using the CICIDS2017 dataset, they evaluated techniques like bagging, AdaBoost, LPBoost, and 
RUSBoost. The study found that Ensemble RUSBoost achieved the highest accuracy of 99.821%, 
demonstrating superior threat detection compared to traditional models [24]. El Hajla (2024) proposed a hybrid 
ensemble approach for intrusion detection in IoT networks, combining methods like AdaBoost, random forest, 
and SVM to improve threat detection accuracy and reduce false positives. Using the CICIDS2017 dataset, their 
study demonstrates the effectiveness of ensemble learning in enhancing IDS resilience for IoT environments 
[25]. The paper [26] presents the Discrete Rat Swarm Optimizer (DRSO) as a new method for solving the 
Quadratic Assignment Problem (QAP), an NP-hard problem.  

The authors introduce a mapping strategy to convert real values to discrete values and redefine operators 
for combinatorial problems. They also incorporate 2-opt and 3-opt local search heuristics to improve solution 
quality. Simulations using the QAPLIB test library and statistical analysis show that DRSO outperforms other 
algorithms in terms of solution quality, convergence speed, and deviation from best-known values, proving it 
to be an efficient approach for solving QAP. The last paper [27] introduces a novel hybrid approach combining 
Genetic Algorithms (GA) and Penguin Search Optimization (PSeOA) to solve the Flow Shop Scheduling 
Problem (FSSP). The GA employs natural selection mechanisms such as selection, crossover, and mutation, 
while PSeOA mimics penguin foraging behavior to enhance exploration. The hybrid method integrates GA's 
genetic diversity with PSeOA's fast convergence, with modifications tailored for FSSP. Experimental results 
show that the hybrid approach outperforms pure GA, PSeOA, and other metaheuristic algorithms in terms of 
solution quality and efficiency. The table summarizes recent works on applying ensemble learning in IIoT and 
smart manufacturing. These studies focus on predictive maintenance, anomaly detection, and decision support, 
using various machine learning and deep learning algorithms, from tree-based models like Random Forest and 
XGBoost to advanced hybrid models like CNNs and LSTMs, to improve accuracy and reliability in complex 
industrial environments. 

 
 
 
 
 
 
 



L. Idouglid et al.: Ensemble learning for real-time anomaly detection and… 44 
________________________________________________________________________________________________________________________ 

Table 1. Summary of Related Works. 
 

Authors Year Methods Algorithms Accuracy/Results 

Yu-Hsin Hung 2021 
Predictive 
Maintenance 

Boosted Decision 
Trees, Neural 
Networks 

97.4% (Semiconductor), 99.2% 
(Blister Packaging) 

Awotunde et 
al. 

2023 
Intrusion Detection 
in IIoT 

XGBoost, 
Random Forest, 
AdaBoost 

98.73% (Fridge), 98.83% 
(Thermostat) 

Shrivastav and 
Kumar 

2021 
Stock Price 
Prediction 

Gradient 
Boosting,  
Random Forest, 
Deep Learning 

99% (Stock Market Prediction) 

Konatham et 
al. 

2024 
Anomaly Detection 
in IIoT (Edge 
Computing) 

Hybrid CNN-
GRU 

96.41% 

Lee et al. 2023 
Anomaly Detection 
in Time-Series 

Multi-Point 
LSTM Ensemble 

95.87% (MobiAct), 97.66% (SWaT) 

Naik et al. 2022 
Comparative 
Analysis for 
Anomaly Detection 

Random Forest, 
LightGBM, 
Decision Trees 

Up to 99% (Anomaly Detection in 
IIoT) 

Koo et al. 2023 
Weight Defect 
Prediction in 
Manufacturing 

Double Ensemble 
(Bagging and 
Boosting) 

97.98% 

Hazman et al. 2022 
Intrusion Detection 
for IoT Networks 

AdaBoost, Feature 
Selection 

99.99% (BoT-IoT) 

Kotsiopoulos 
et al. 

2020 
Smart Manufacturing 
& Smart Grids 

Random Forest, 
SVM, CNN, RNN 

High Performance in Smart Grid 
Applications 

Rodriguez et 
al. 

2023 
Decision Support in 
Aquaponic Systems 

Bagging and 
Boosting 
Ensemble 
Techniques 

96.93% (Bagging), 95.23% 
(Boosting) 

Maha Al-
Sharif, Anas 
Bushnag 

2024 

Ensemble Learning-
based Intrusion 
Detection System 
(IDS) 

Bagging, 
AdaBoost, 
LPBoost, 
RUSBoost 

Ensemble RUSBoost achieved the 
highest performance with 99.821% 
accuracy 

El Hajla 2024 

Hybrid Ensemble 
Learning Approach 
for Intrusion 
Detection 

AdaBoost, 
Random Forest, 
Support Vector 
Machines (SVM) 

Improved detection accuracy and 
reduced false positive rates using 
CICIDS2017 dataset 

Mzili et al. 2023 

Discrete Rat Swarm 
Optimizer (DRSO) 

Rat Swarm 
Optimization 
(QAP) 

The DRSO algorithm outperforms 
other algorithms in solving the QAP, 
demonstrating superior solution 
quality, faster convergence, and 
lower deviation from the best-known 
values. 

Mzili et al. 2024 

Hybrid Genetic 
Algorithm and 
Penguin Search 
Optimization 
(PSeOA) 

Flow Shop 
Scheduling 
Problem (FSSP) 

The hybrid approach outperforms 
pure GA, PSeOA, and other 
metaheuristics in terms of solution 
quality and efficiency in solving the 
FSSP. 

 
These studies collectively demonstrate the growing importance of ensemble learning in enhancing the 
performance of machine learning models across diverse industrial applications. By integrating multiple 
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algorithms, ensemble methods consistently deliver superior accuracy and robustness, making them essential 
for addressing the challenges posed by large-scale, heterogeneous IIoT data. As the field continues to evolve, 
these advancements in predictive analytics, anomaly detection, and decision support systems will play a critical 
role in driving the next generation of smart manufacturing and industrial automation. 
 
3 Methodology 
 

This research aims to advance the state of predictive maintenance and anomaly detection in smart factories by 
leveraging the strengths of ensemble learning algorithms applied to IIoT data. By utilizing the CICIoT2023 
dataset, which is specifically designed to represent the complexity and scale of IIoT network traffic and 
operational data, this study not only demonstrates the efficacy of ensemble methods in industrial environments 
but also provides a comprehensive analysis of their performance across various metrics. The methodology is 
carefully designed to address the challenges posed by the vast and heterogeneous nature of IIoT data, 
employing state-of-the-art preprocessing techniques, hyperparameter optimization, and robust validation 
strategies to ensure the reliability and applicability of the results in real-world smart manufacturing contexts. 
This approach highlights the potential of ensemble learning to enhance both the accuracy and speed of 
predictive models, offering a scalable and adaptive solution for improving the cybersecurity and operational 
efficiency of next-generation industrial systems. 
 
3.1 Dataset Description 

 

The CICIoT2023 dataset [28], created by the Canadian Institute for Cybersecurity, is one of the most recent 
and detailed datasets available for IIoT applications. It includes a wide range of features extracted from IIoT 
devices, covering both normal and malicious activities. This dataset is particularly suited for anomaly 
detection, as it encompasses real-world scenarios of both normal operations and various attack vectors. The 
dataset was preprocessed to remove any missing values, normalize the features, and balance the class 
distributions to ensure a robust training process for the models [29]. The URL to access this dataset, is: 
https://www.unb.ca/cic/datasets/ In addition to its comprehensive feature set, the CICIoT2023 dataset offers 
detailed labels for each instance, making it highly suitable for supervised learning tasks. Its attack scenarios 
include Distributed Denial of Service (DDoS), Man-in-the-Middle (MITM) attacks, and data injection, 
providing a broad spectrum of challenges for machine learning models. Furthermore, the dataset's focus on 
IIoT-specific characteristics, such as sensor data patterns and communication protocols, allows researchers to 
develop and test models under conditions closely resembling real-world IIoT environments. This specificity 
makes CICIoT2023 a valuable resource for advancing cybersecurity and operational efficiency in smart 
manufacturing systems. 
 
3.2 Principal Steps 

 

The methodology involved several key steps, outlined as follows: 
 

3.2.1 Data Preprocessing 
 

 Feature Selection: Initial feature selection was conducted to reduce the dimensionality of the dataset 
and retain the most relevant features for the predictive tasks. Techniques such as recursive feature 
elimination and correlation analysis were employed to identify the most impactful features [30]. 

 Data Normalization: To ensure that all features contribute equally to the learning process, the data was 
normalized using MinMax scaling, bringing all features into the range [0, 1] [31]. 

 Train-Test Split: The dataset was partitioned into training (80%) and testing (20%) sets using stratified 
sampling to preserve the original class distribution. 

3.2.2 Evaluation Metrics 
 

The models were assessed using a range of performance metrics, including ROC AUC score, recall, precision, 
F1-score, and accuracy. Additionally, the confusion matrix was employed to gain deeper insights into the 
classification performance, specifically examining the rates of true positives, true negatives, false positives, 
and false negatives [32]. 
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3.2.3 Training and Testing 
 

Each model was trained on the CICIoT2023 dataset using stratified k-fold cross-validation to ensure strong 
generalization to new data. To optimize performance, a grid search method was employed for hyperparameter 
tuning, identifying the most effective parameter combinations for each algorithm [13]. 
 
3.2.4 Performance Comparison 

 

After training and validation, the models' performance was compared using the evaluation metrics, with 
particular focus on their ability to detect anomalies and failures while minimizing false positives and false 
negatives. The results were compiled into a table that presented each algorithm’s confusion matrix,  recall, 
precision, F1 score, accuracy, and computational efficiency, measured in terms of training and testing time 
[33]. 
 
3.3  Algorithms and Implementation 

The algorithms were implemented using Python and popular machine learning libraries such as scikit-learn, 
XGBoost, and LightGBM [34]. The steps were as follows: 

 Gradient Boosting: Implemented using scikit-learn's GradientBoostingClassifier, the model was fine-
tuned to optimize for both speed and accuracy, with key hyperparameters like learning rate, number of 
estimators, and maximum depth being adjusted [35]. 

 XGBoost: Using the XGBClassifier from the `xgboost` library, hyperparameter tuning focused on tree 
depth, learning rate, and regularization terms to control overfitting and improve generalization [36]. 

 LightGBM: Implemented using LGBMClassifier from the ̀ lightgbm` library, this algorithm was optimized 
for speed and memory usage, with leaf-wise growth strategies being preferred to depth-wise [37]. 

 Bagging: Scikit-learn's BaggingClassifier was used with a variety of base estimators, primarily decision 
trees, to create an ensemble that averaged out the noise and variance from individual models [38]. 

 AdaBoost: The AdaBoostClassifier from scikit-learn was utilized, with weak learners being adjusted to 
improve performance on hard-to-classify instances in the dataset [39]. 

 Voting Classifier: The ensemble of classifiers was combined using a hard voting mechanism where each 
classifier's predictions were weighted equally. 

3.4 Methodology Flowchart Representation 

The methodology follows a clear and structured process that begins with dataset preparation and ends with 
model evaluation, ensuring a thorough and effective approach to predictive maintenance and anomaly 
detection. This linear approach ensures that each step contributes to building a highly accurate and reliable 
predictive model for IIoT systems. 

 

 
 

Figure 1. Linear Flowchart Representation of Methodology. 
 

This graphical flowchart effectively organizes the entire process from dataset acquisition to model evaluation, 
making the methodology clear and linear.  
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 Step 1: Dataset - CICIoT2023   
The foundation of the analysis is the CICIoT2023 dataset, providing the necessary data for model training 
and testing. 

 Step 2: Data Preprocessing   
Key actions include feature selection, data normalization, and train-test splitting, which prepare the data 
for optimal model performance. 

 Step 3: Ensemble Algorithms   
Multiple ensemble learning techniques (Gradient Boosting, XGBoost, LightGBM, Bagging, AdaBoost, 
and Voting Classifier) are implemented to enhance predictive accuracy and robustness. 

 Step 4: Model Training & Hyperparameter Tuning   
Models are trained and fine-tuned using hyperparameter optimization to achieve the best performance on 
the preprocessed dataset. 

 Step 5: Evaluation Metrics   
The effectiveness of the models is assessed using a range of evaluation metrics: precision, recall 
(sensitivity), F1 score, ROC AUC, and accuracy. These metrics are crucial for evaluating the performance 
of anomaly detection systems, as they provide a comprehensive understanding of how well the models 
distinguish between normal and anomalous instances in IIoT environments. Specifically, they help assess 
the trade-off between correctly identifying anomalies and minimizing false alarms, which is critical in 
predictive maintenance and anomaly detection. 

 Accuracy (ACC): Measures the proportion of correct predictions (true positives and true negatives). It 
can be misleading with imbalanced data, as it may not reflect effective anomaly detection. The ACC 
metric is calculated in Eq. (1):  
 

TP + TN

TP + TN + FP + FN
    (1) 

 
 Precision: Indicates the proportion of predicted anomalies that are true anomalies. High precision 

minimizes false positives, avoiding unnecessary alerts. The metric is calculated using Eq. (2): 
 

FP

FP + TN
 , (2) 

                    
 Recall (Sensitivity): Measures the proportion of actual anomalies correctly identified by the model. High 

recall ensures most anomalies are detected, important for predictive maintenance. 
 

True Positive / (False Negative + True Positive) (3) 

 
 F1 Score: The harmonic mean of precision and recall, balancing both metrics. It’s useful in imbalanced 

datasets, ensuring the model performs well in both detection and accuracy. 
 

2 * ((Precision * Sensitivity) / (Precision + Sensitivity)) (4) 

 
 ROC AUC: Reflects the model's ability to differentiate between positive and negative classes. A higher 

AUC indicates better discrimination, especially in imbalanced datasets. 

Together, these metrics provide a well-rounded evaluation framework to determine the most suitable model 
for anomaly detection and predictive maintenance in IIoT systems, ensuring that the model performs optimally 
in identifying anomalies while minimizing false alarms. 
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4 Results and Discussion 

In this section, we evaluate the performance of six ensemble learning algorithms (Gradient Boosting, XGBoost, 
LightGBM, Bagging, AdaBoost, and Voting Classifier) applied to the CICIoT2023 dataset. The performance 
of the models was evaluated using key metrics, including accuracy, precision, recall, F1-score, and ROC AUC. 
As shown in Table 2, Bagging achieved the highest accuracy (99.750%), while XGBoost demonstrated the 
fastest prediction time (7.88 ms), making it ideal for real-time anomaly detection. 

 
4.1 Model Evaluation and Results 

Table 2 summarizes the performance of the ensemble learning models applied to the CICIoT2023 dataset. 
Bagging achieved the highest accuracy of  99.750%, indicating its effectiveness in generalizing to unseen data. 
Meanwhile, XGBoost and LightGBM demonstrated competitive accuracies of 99.633% and 99.676%, 
respectively, with significantly faster training times, making them suitable for real-time applications. 
Accuracy: Bagging achieved the highest accuracy at 99.750%, which suggests that this model is highly 
effective at distinguishing between normal and anomalous instances. This high accuracy indicates that 
Bagging is a strong candidate for applications where minimizing false negatives is critical, such as anomaly 
detection in IIoT systems. 
Precision: Bagging also exhibited excellent precision (99.754%), indicating that it makes very few false 
positive predictions. This is crucial in IIoT applications where false alarms could lead to unnecessary 
interventions and higher operational costs. 
Recall: With a recall of 99.750%, Bagging excels in correctly identifying anomalies. High recall is essential 
for ensuring that as many anomalies as possible are detected, particularly in predictive maintenance tasks 
where undetected issues can lead to system failures. 
F1 Score: The 99.752% F1 score for Bagging indicates a well-balanced model in terms of both precision and 
recall. This makes it ideal for real-world applications where both false positives and false negatives need to 
be minimized. 
ROC AUC: The ROC AUC score for Bagging was 99.972%, reflecting its outstanding ability to discriminate 
between normal and anomalous instances. A high AUC is particularly valuable when dealing with 
imbalanced datasets, as it shows the model’s robustness across various decision thresholds. 
Training Time: Although Bagging achieved the best performance, it required 56,044.94 seconds to train, 
which is significantly longer than models like XGBoost and LightGBM. This highlights a trade-off between 
accuracy and computational efficiency. While Bagging’s performance is superior, its long training time may 
be a limitation in real-time applications that require frequent model updates. 
Prediction Time: Bagging’s prediction time was 79.04 milliseconds, which is slower compared to models like 
XGBoost (7.88 milliseconds) and LightGBM (29.24 milliseconds). This further emphasizes the trade-off 
between the higher accuracy of Bagging and its slower operational speed. 

 
Table 2. Performance Comparison of Machine Learning Models for Intrusion Detection. 

Algorithm Accuracy Precision Recall F1 Score 
ROC AUC 
Score 

Training 
Time (s) 

Prediction 
Time (ms) 

Gradient 
Boosting 

99.655% 99.659% 99.655% 99.657% 99.959% 17113.25 20.48 

XGBoost 99.633% 99.648% 99.633% 99.639% 99.946% 5540.97 7.88 

LightGBM 99.676% 99.685% 99.676% 99.679% 99.956% 4069.92 29.24 
Bagging 
Classifier 

99.750% 99.754% 99.750% 99.752% 99.972% 56044.94 79.04 

AdaBoost 99.605% 99.615% 99.605% 99.609% 99.948% 6277.16 78.60 
Voting 
Classifier 

99.716% 99.719% 99.716% 99.717% 99.971% 32072.37 193.59 
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4.1.1 Accuracy 

The accuracy of the ensemble models is illustrated in Figure 2. Bagging emerges as the top performer, 
achieving an accuracy of 99.750%. This is closely followed by the Voting Classifier, which also demonstrates 
strong performance. These results highlight the potential of ensemble methods to improve predictive 
maintenance in IIoT systems. 
 

 
Figure 2. Comparison of Accuracy for Ensemble Learning Algorithms on the CICIoT2023 Dataset. 

 
4.1.2 Precision and Recall 

Figure 3 compares the precision and recall metrics for the evaluated models. Bagging and Voting Classifiers 
consistently exhibit high precision and recall values, underscoring their ability to minimize false positives and 
false negatives effectively. This makes these models suitable for high-stakes environments where accuracy 
and reliability are paramount 

 
Figure 3. Comparison of Precision and Recall for Ensemble Learning Algorithms on the CICIoT2023 

Dataset. 
 

- Bagging Classifier: High precision and recall suggest that this model can reliably predict true positives 
(correctly classified events) with minimal false positives or negatives. This makes it a strong candidate for 
high-stakes environments such as anomaly detection in IIoT. 
- Voting Classifier: Similar to Bagging, the Voting Classifier effectively combines the predictions of multiple 
models to maintain high precision and recall. 
 
4.1.3 F1 Score 

As shown in Figure 4, the F1 Score of the models reflects their balanced precision and recall. Bagging leads 
with an F1 Score of 99.752%, while LightGBM and XGBoost follow closely. These results emphasize the 
reliability of ensemble methods in maintaining high predictive performance. 
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Figure 4. Comparison of F1 Score for Ensemble Learning Algorithms on the CICIoT2023 Dataset. 

 
4.1.4 ROC AUC 

The ROC AUC scores of the models are depicted in Figure 5. Bagging and Voting Classifiers achieve near-
perfect scores of 99.972% and 99.971%, respectively, indicating their exceptional capability to distinguish 
between normal and anomalous instances. This highlights their robustness for anomaly detection in IIoT 
systems. 
 

 
Figure 5. Comparison of ROC AUC for Ensemble Learning Algorithms on the CICIoT2023 Dataset. 

 
4.1.5 Training and Prediction Times 

 

Bagging Classifier required the longest training time (56044.94 seconds) due to its nature of training multiple 
decision trees on bootstrapped samples. In contrast, LightGBM and XGBoost demonstrated significantly faster 
training times of 4069.92 seconds and 5540.97 seconds, respectively, striking a balance between accuracy and 
computational efficiency, which makes them suitable for real-time systems. Additionally, XGBoost exhibited 
the fastest prediction time at 7.88 milliseconds, followed by Gradient Boosting at 20.48 milliseconds, further 
solidifying XGBoost's suitability for real-time anomaly detection and predictive maintenance applications. 
Figure 6 shows the training and prediction times for the ensemble models. While Bagging achieves the highest 
accuracy, it has the longest training time, making it less suitable for real-time applications. Conversely, 
XGBoost exhibits the fastest prediction time of 7.88 milliseconds, offering a practical balance between 
computational efficiency and predictive performance. 
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Figure 6. Comparison of Training and Prediction Times for Ensemble Learning Algorithms on the 

CICIoT2023 Dataset. 
 

The performance of ensemble learning models in IIoT environments is determined not just by their 
accuracy but also by their computational efficiency. XGBoost stands out for its balance of 99.633% accuracy 
and fast prediction time of 7.88 milliseconds, making it ideal for real-time anomaly detection. LightGBM, with 
99.676% accuracy and a short training time of 4069.92 seconds, excels in systems requiring quick updates 
while maintaining high performance. However, Bagging and Voting Classifiers offer superior accuracy but at 
the cost of extended training and prediction times, limiting their use in dynamic, real-time environments. 
Selecting the right algorithm depends on application needs. XGBoost is optimal for real-time monitoring in 
IIoT networks due to its quick prediction and strong accuracy. For highly sensitive systems requiring maximum 
accuracy, Bagging Classifier and Voting Classifier are recommended, despite their longer computational 
times. These models are suitable for high-stakes applications, such as anomaly detection in critical 
infrastructures, where detection accuracy outweighs speed. LightGBM is an excellent choice for large-scale, 
dynamic environments where frequent model retraining is necessary, striking a balance between speed and 
predictive performance. Ensemble learning techniques, when applied to IIoT and IDS applications, enhance 
both security and operational efficiency. XGBoost and LightGBM excel in fast decision-making and model 
retraining, making them ideal for real-time and adaptive systems. Meanwhile, Bagging and Voting Classifiers 
provide unparalleled accuracy, best suited for high-stakes environments where precision is critical.  

These algorithms collectively offer a flexible range of options, catering to various IIoT and IDS 
applications, from real-time intrusion detection to predictive maintenance in smart factories, ensuring 
improved detection and response capabilities. To further assess the performance of the ensemble learning 
models, we compare them with simpler baseline models, such as Decision Tree and Logistic Regression. These 
models serve as a reference to highlight the advantages of using more complex ensemble methods. Decision 
Tree is a straightforward model that builds a tree-like structure to make decisions based on input features. 
While it is easy to interpret, it tends to overfit and lacks the generalization power needed for complex anomaly 
detection tasks, especially when the dataset is imbalanced. Logistic Regression is a linear model that predicts 
the probability of an instance belonging to a specific class. It is computationally efficient but often struggles 
with complex, nonlinear relationships in the data, such as those found in IIoT environments. In comparison, 
ensemble methods like Bagging, XGBoost, and LightGBM consistently outperform these simpler models. 
These methods leverage multiple base learners, improving generalization and robustness by combining the 
strengths of various models. For example, while Decision Trees may suffer from overfitting, Bagging reduces 
this risk by averaging multiple decision trees trained on different data subsets. Similarly, XGBoost and 
LightGBM improve both accuracy and computational efficiency, especially in large-scale, imbalanced 
datasets, making them more suitable for real-time anomaly detection in IIoT systems. 

 
5 Conclusion 

This study demonstrates the significant potential of ensemble learning algorithms in improving predictive 
maintenance and anomaly detection for IIoT and Intrusion Detection Systems (IDS). Among the models tested, 
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Bagging and Voting Classifiers achieved the highest accuracy, making them well-suited for complex detection 
tasks where precision is critical. However, their high computational cost limits their applicability in real-time 
systems. In contrast, XGBoost and LightGBM strike an ideal balance between accuracy and computational 
efficiency, making them more suitable for real-time applications such as continuous monitoring in smart 
factories.The findings highlight the importance of selecting the right model based on the trade-off between 
performance and operational efficiency. While Bagging excels in accuracy, models like XGBoost and 
LightGBM provide faster processing times, which are crucial for dynamic IIoT environments where real-time 
decision-making is essential. This research advances the field by demonstrating how ensemble methods can 
be adapted to meet the demands of both high accuracy and speed, offering a robust solution for IIoT 
applications. Future work should focus on integrating ensemble learning techniques with deep learning models, 
potentially creating hybrid models that can further enhance performance by capturing both spatial and temporal 
data patterns in IIoT systems. Additionally, the development of lightweight models optimized for edge 
computing could help improve real-time decision-making by reducing the reliance on centralized servers, 
making anomaly detection more efficient in remote or resource-constrained environments. While this study 
relies on the CICIoT2023 dataset, future research should validate these models across more diverse datasets to 
assess their generalizability. Exploring unsupervised learning methods would also be beneficial for handling 
limited labeled data, which is common in real-world IIoT environments. Overall, this work contributes to 
enhancing the security and operational efficiency of IIoT systems, laying the groundwork for resilient, 
intelligent smart manufacturing systems. 
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