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This paper explores the use of several ensemble learning
algorithms Gradient Boosting, XGBoost, LightGBM, Bagging,
AdaBoost, and Voting Classifier on the CICIoT2023 dataset within
the framework of Industrial Internet of Things (IIoT) and Intrusion
Detection Systems (IDS). The main goal is to improve anomaly
detection and predictive maintenance in smart manufacturing
environments. The models' performance was assessed using key
metrics such as precision, recall, accuracy, F1 score, and ROC
AUC score, in addition to evaluating their training and prediction
times. Results show that Bagging and Voting Classifiers achieved
the highest accuracy and ROC AUC scores, making them highly

effective for complex detection tasks. However, XGBoost and
LightGBM demonstrated superior computational efficiency,
making them suitable for real-time systems requiring fast
prediction times. The findings indicate that ensemble learning
techniques can significantly improve both the accuracy and speed
of anomaly detection in IloT systems, providing a robust
framework for enhancing cybersecurity and operational efficiency
in smart factories.

DOI: https://doi.org/10.30765/er.2633

1 Introduction

The advent of Industry 4.0 has revolutionized the manufacturing sector by introducing smart factories,
which leverage the Industrial Internet of Things (IIoT) to enhance operational efficiency and decision-making
[1], [2]. IIoT enables factories to connect vast networks of devices, sensors and actuators that collect, share,
and analyze real-time data[3]. These innovations have provided significant advancements in areas such as real-
time monitoring, predictive maintenance, and operational optimization, thereby allowing industries to reduce
downtime and increase productivity [4]. A critical benefit of IIoT lies in predictive maintenance, where
machine learning models analyze historical sensor data to predict equipment failures before they occur. This
proactive approach prevents unexpected breakdowns, minimizes downtime, and extends the lifespan of
industrial equipment [5]. Furthermore, predictive maintenance reduces maintenance costs and mitigates the
risk of catastrophic failures that can disrupt production lines. Another crucial application of IloT is real-time
anomaly detection, which involves monitoring operational data streams to detect irregularities that might
indicate malfunctions or quality control issues [6]. For instance, anomalies in temperature, vibration, or other
metrics can signal early signs of equipment wear or inefficiencies. However, the success of such systems
depends heavily on the accuracy and reliability of the underlying machine learning algorithms. Despite these
advancements, traditional machine learning approaches face significant challenges when applied to the vast
and heterogeneous data generated by IloT systems. These include computational inefficiency, poor scalability,
and vulnerability to overfitting, particularly when dealing with high-dimensional or imbalanced datasets [7].
Additionally, the complex nature of IIoT data, which often includes a mix of continuous and categorical
features, as well as missing values, exacerbates these limitations. Ensemble learning has emerged as a
promising solution to address these challenges [8]. By combining the predictions of multiple models, ensemble
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techniques leverage the strengths of individual algorithms to produce more accurate and stable predictions.
This approach helps mitigate common issues such as overfitting or bias, making ensemble learning particularly
suited for the complex environments of smart factories. Among ensemble learning methods, Gradient
Boosting, Bagging, and Voting classifiers have demonstrated notable success. Gradient Boosting builds
models sequentially, with each iteration correcting the errors of the previous one to minimize loss and enhance
accuracy [9]. Bagging independently trains multiple models on different data subsets, reducing variance and
improving generalization [10]. Voting classifiers aggregate the predictions of multiple models, producing a
final prediction based on majority voting, which leverages the strengths of each contributing model [11]. While
ensemble learning techniques have been widely adopted in domains such as finance, healthcare, and
cybersecurity, their application to [IoT and smart manufacturing remains relatively underexplored [12]. Given
the critical need for accurate, real-time decision-making in smart factories, ensemble learning presents an
opportunity to optimize predictive maintenance and anomaly detection tasks.

This paper addresses these gaps by demonstrating the potential of ensemble learning techniques in tackling
key challenges in IIoT applications for smart manufacturing. Specifically, it evaluates the performance of
advanced ensemble methods—such as Bagging and Voting Classifiers—for predictive maintenance and
anomaly detection. The study highlights how these models achieve superior accuracy, reliability, and
computational efficiency, making them suitable for real-time industrial applications. The results affirm that
ensemble learning not only enhances detection capabilities but also provides robust, scalable solutions for
next-generation industrial systems [13]. By leveraging advanced ensemble techniques, this work contributes
a comprehensive framework for improving cybersecurity, operational resilience, and efficiency in smart
factories. This framework underscores the transformative potential of IloT-based applications and positions
ensemble learning as a critical tool for advancing Industry 4.0 initiatives [14]. This paper is organized as
follows: Section II reviews related works on machine learning and ensemble techniques in IloT and smart
manufacturing. Section III details the methodology, including dataset description, preprocessing, algorithms,
and evaluation metrics. Section IV presents the results and analysis of the ensemble algorithms applied to the
CICIoT2023 dataset. Section V concludes with key findings and future research directions.

2 Related Works

The application of machine learning and ensemble techniques in IIoT and smart manufacturing systems is a
growing research field, with various studies focusing on improving anomaly detection, predictive maintenance,
and decision support systems. Below is an organized overview of relevant works drawn from recent literature.
In 2021, Yu-Hsin Hung presented an enhanced ensemble-learning algorithm specifically designed for
predictive maintenance in the semiconductor and blister packaging industries. This model integrates adaptive
boosted decision trees with neural networks to improve the accuracy of predicting equipment failures and
product quality degradation. The approach achieved an impressive accuracy of 99.2% in blister packaging and
97.4% in semiconductor manufacturing, highlighting its potential to significantly enhance predictive
maintenance in industrial processes [15]. In 2023 Awotunde proposed an Ensemble Tree-Based Model for
Intrusion Detection in IloT networks, leveraging ensemble methods like XGBoost, Random Forest, and
AdaBoost combined with chi-square feature selection. Tested on the TON_IoT datasets, the model achieved
accuracies of 98.73% on the Fridge dataset and 98.83% on the Thermostat dataset, demonstrating the strength
of tree-based models for cyberattack detection in IIoT environments [16]. In 2021, Shrivastav and Kumar
developed an ensemble model that combines Random Forest (RF), Gradient Boosting Machine (GBM), and
Deep Learning (DL) to enhance stock price prediction. When applied to a large stock market dataset, the model
achieved a 99% accuracy rate, surpassing the performance of each individual model. While the study is
centered on finance, the ensemble approach demonstrates its broader potential for effectively managing large,
complex datasets in IIoT applications [17]. In (2024) Konatham presented a Hybrid CNN-GRU Model for
Anomaly Detection in I1oT systems, focusing on edge computing environments. Their model achieved 96.41%
accuracy, demonstrating the advantages of combining spatial and temporal features to improve detection of
real-time cyber threats in [IoT networks [18]. In 2023 Lee developed a novel approach for Anomaly Detection
Using an Ensemble of Multi-Point LSTMs. By employing LSTM networks and combining them in an
ensemble model, they achieved high anomaly detection accuracy, with 95.87% accuracy on the MobiAct
dataset and 97.66% accuracy on the SWaT dataset. This method highlights the strength of neural networks in
processing time-series data for industrial applications [19]. In 2022, Naik conducted a comparative analysis of
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machine learning algorithms for anomaly detection in IIoT environments. The study found that Random Forest
consistently outperformed other algorithms across multiple datasets, achieving accuracy rates of up to 99% for
detecting anomalies in [IoT systems. This research highlights the critical role of selecting the most suitable
algorithms for effective anomaly detection in industrial settings [20]. Koo (2023) proposed a Double Ensemble
Technique for Predicting Weight Defects in injection-molded products used in smart manufacturing. By
combining bagging and boosting in a double ensemble, they achieved an accuracy of 97.98%, demonstrating
improvements in defect prediction and product quality maintenance in smart factories[21]. In 2022 Hazman
introduced IDS-SIoEL, an Intrusion Detection Framework for securing loT-based smart environments. This
framework leverages ensemble methods like AdaBoost and advanced feature selection techniques to achieve
near-perfect detection rates, with 99.99% accuracy on the BoT-IoT dataset.

The study emphasizes the role of ensemble learning in improving security in [oT systems[22]. Rodriguez
and colleagues developed a prediction model for smart aquaponic systems using a combination of Bagging
and Boosting Ensemble Techniques. The model was integrated into an autonomous IloT-based aquaponic
management system to optimize water quality for plants and fish. Key parameters such as dissolved oxygen,
pH, and water temperature were monitored and processed using machine learning. The study showed that the
bagging-based model achieved a test accuracy of 94.09%, while the boosting-based model improved this to
95.23%, illustrating the effectiveness of ensemble learning in precision agriculture[10]. Kotsiopoulos (2020)
explored the application of Machine Learning (ML) and Deep Learning (DL) in smart manufacturing and
smart grids within the context of Industry 4.0. The study proposes a comprehensive Industrial Artificial
Intelligence (IAI) architecture, integrating various ML and DL models, including Random Forest, SVM, CNN,
and RNN, to optimize predictive maintenance, fault detection, and energy efficiency in industrial
environments. The authors highlight the high performance of DL models in handling complex data but also
note the challenges posed by computational costs and data requirements[23]. Maha Al-Sharif and Anas
Bushnag, (2024) proposed an ensemble learning-based intrusion detection system (IDS) to enhance cloud
security. Using the CICIDS2017 dataset, they evaluated techniques like bagging, AdaBoost, LPBoost, and
RUSBoost. The study found that Ensemble RUSBoost achieved the highest accuracy of 99.821%,
demonstrating superior threat detection compared to traditional models [24]. El Hajla (2024) proposed a hybrid
ensemble approach for intrusion detection in IoT networks, combining methods like AdaBoost, random forest,
and SVM to improve threat detection accuracy and reduce false positives. Using the CICIDS2017 dataset, their
study demonstrates the effectiveness of ensemble learning in enhancing IDS resilience for [oT environments
[25]. The paper [26] presents the Discrete Rat Swarm Optimizer (DRSO) as a new method for solving the
Quadratic Assignment Problem (QAP), an NP-hard problem.

The authors introduce a mapping strategy to convert real values to discrete values and redefine operators
for combinatorial problems. They also incorporate 2-opt and 3-opt local search heuristics to improve solution
quality. Simulations using the QAPLIB test library and statistical analysis show that DRSO outperforms other
algorithms in terms of solution quality, convergence speed, and deviation from best-known values, proving it
to be an efficient approach for solving QAP. The last paper [27] introduces a novel hybrid approach combining
Genetic Algorithms (GA) and Penguin Search Optimization (PSeOA) to solve the Flow Shop Scheduling
Problem (FSSP). The GA employs natural selection mechanisms such as selection, crossover, and mutation,
while PSeOA mimics penguin foraging behavior to enhance exploration. The hybrid method integrates GA's
genetic diversity with PSeOA's fast convergence, with modifications tailored for FSSP. Experimental results
show that the hybrid approach outperforms pure GA, PSeOA, and other metaheuristic algorithms in terms of
solution quality and efficiency. The table summarizes recent works on applying ensemble learning in IloT and
smart manufacturing. These studies focus on predictive maintenance, anomaly detection, and decision support,
using various machine learning and deep learning algorithms, from tree-based models like Random Forest and
XGBoost to advanced hybrid models like CNNs and LSTMs, to improve accuracy and reliability in complex
industrial environments.
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Table 1. Summary of Related Works.
Authors Year Methods Algorithms Accuracy/Results
. Predictive Boosted Decision o7 4o, (emiconductor),  99.2%
Yu-Hsin Hung 2021 ) Trees, Neural . .
Maintenance (Blister Packaging)
Networks
. . XGBoost, .
Awotunde et Intrusion  Detection 98.73% (Fridge), 98.83%
al 2023 in [IoT Random  Forest, (Thermostat)
’ AdaBoost
Gradient
Shrivastav and Stock Price Boosting, 0 i
Kumar 2021 Prediction Random  Forest, 99% (Stock Market Prediction)
Deep Learning
Anomaly Detection .
Konatham et >4 i oT  (Bdge HXPHd ONN- g6 410,
al. ) GRU
Computing)
Anomaly Detection Multi-Point 0 . 0
Lee et al. 2023 in Time-Series LSTM Ensemble 95.87% (MobiAct), 97.66% (SWaT)
Comparative Random  Forest, o L
Naik et al. 2022  Analysis for LightGBM, }IJth)O 99% (Anomaly Detection in
Anomaly Detection  Decision Trees
Weight Defect Double Ensemble
Koo et al. 2023 Prediction in (Bagging and 97.98%
Manufacturing Boosting)
Intrusion Detection AdaBoost, Feature o
Hazmanetal. 2022 for ToT Networks Selection 99.99% (BoT-10T)
Kotsiopoulos 2020 Smart Manufacturing Random  Forest, High Performance in Smart Grid
et al. & Smart Grids SVM, CNN, RNN  Applications
Bagging and
Rodriguez et 2023 Decision Support in  Boosting 96.93% (Bagging), 95.23%
al. Aquaponic Systems  Ensemble (Boosting)
Techniques
Ensemble Learning- Bagging, .
Maha Al- . Ensemble RUSBoost achieved the
. based Intrusion AdaBoost, . .
Sharif, Anas 2024 . highest performance with 99.821%
Bushna Detection System LPBoost, Aceurac
& (IDS) RUSBoost y
Hybrid  Ensemble AdaBoost, .
. Improved detection accuracy and
. Learning Approach Random  Forest, . .
El Hajla 2024 . reduced false positive rates using
for Intrusion Support  Vector CICIDS2017 dataset
Detection Machines (SVM)
Discrete Rat Swarm Rat Swarm The DRSO algorithm outperforms
Optimizer (DRSO) Optimization other algorithms in solving the QAP,
Muzili of al. 2023 (QAP) dempnstratmg superior  solution
quality, faster convergence, and
lower deviation from the best-known
values.
Hybrid Genetic Flow Shop The hybrid approach outperforms
Algorithm and Scheduling pure GA, PSeOA, and other
Mzili et al. 2024 Penguin Search Problem (FSSP) metaheuristics in terms of solution
Optimization quality and efficiency in solving the
(PSeOA) FSSP.

These studies collectively demonstrate the growing importance of ensemble learning in enhancing the
performance of machine learning models across diverse industrial applications. By integrating multiple
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algorithms, ensemble methods consistently deliver superior accuracy and robustness, making them essential
for addressing the challenges posed by large-scale, heterogeneous IloT data. As the field continues to evolve,
these advancements in predictive analytics, anomaly detection, and decision support systems will play a critical
role in driving the next generation of smart manufacturing and industrial automation.

3 Methodology

This research aims to advance the state of predictive maintenance and anomaly detection in smart factories by
leveraging the strengths of ensemble learning algorithms applied to IloT data. By utilizing the CIC1oT2023
dataset, which is specifically designed to represent the complexity and scale of IIoT network traffic and
operational data, this study not only demonstrates the efficacy of ensemble methods in industrial environments
but also provides a comprehensive analysis of their performance across various metrics. The methodology is
carefully designed to address the challenges posed by the vast and heterogeneous nature of IloT data,
employing state-of-the-art preprocessing techniques, hyperparameter optimization, and robust validation
strategies to ensure the reliability and applicability of the results in real-world smart manufacturing contexts.
This approach highlights the potential of ensemble learning to enhance both the accuracy and speed of
predictive models, offering a scalable and adaptive solution for improving the cybersecurity and operational
efficiency of next-generation industrial systems.

3.1 Dataset Description

The CICIoT2023 dataset [28], created by the Canadian Institute for Cybersecurity, is one of the most recent
and detailed datasets available for IIoT applications. It includes a wide range of features extracted from IloT
devices, covering both normal and malicious activities. This dataset is particularly suited for anomaly
detection, as it encompasses real-world scenarios of both normal operations and various attack vectors. The
dataset was preprocessed to remove any missing values, normalize the features, and balance the class
distributions to ensure a robust training process for the models [29]. The URL to access this dataset, is:
https://www.unb.ca/cic/datasets/ In addition to its comprehensive feature set, the CICIoT2023 dataset offers
detailed labels for each instance, making it highly suitable for supervised learning tasks. Its attack scenarios
include Distributed Denial of Service (DDoS), Man-in-the-Middle (MITM) attacks, and data injection,
providing a broad spectrum of challenges for machine learning models. Furthermore, the dataset's focus on
HoT-specific characteristics, such as sensor data patterns and communication protocols, allows researchers to
develop and test models under conditions closely resembling real-world IIoT environments. This specificity
makes CICIoT2023 a valuable resource for advancing cybersecurity and operational efficiency in smart
manufacturing systems.

3.2 Principal Steps
The methodology involved several key steps, outlined as follows:
3.2.1 Data Preprocessing

e  Feature Selection: Initial feature selection was conducted to reduce the dimensionality of the dataset
and retain the most relevant features for the predictive tasks. Techniques such as recursive feature
elimination and correlation analysis were employed to identify the most impactful features [30].

e Data Normalization: To ensure that all features contribute equally to the learning process, the data was
normalized using MinMax scaling, bringing all features into the range [0, 1] [31].

o Train-Test Split: The dataset was partitioned into training (80%) and testing (20%) sets using stratified
sampling to preserve the original class distribution.

3.2.2  Evaluation Metrics

The models were assessed using a range of performance metrics, including ROC AUC score, recall, precision,
F1-score, and accuracy. Additionally, the confusion matrix was employed to gain deeper insights into the
classification performance, specifically examining the rates of true positives, true negatives, false positives,
and false negatives [32].
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3.2.3  Training and Testing

Each model was trained on the CICIoT2023 dataset using stratified k-fold cross-validation to ensure strong
generalization to new data. To optimize performance, a grid search method was employed for hyperparameter
tuning, identifying the most effective parameter combinations for each algorithm [13].

3.2.4  Performance Comparison

After training and validation, the models' performance was compared using the evaluation metrics, with
particular focus on their ability to detect anomalies and failures while minimizing false positives and false
negatives. The results were compiled into a table that presented each algorithm’s confusion matrix, recall,
precision, F1 score, accuracy, and computational efficiency, measured in terms of training and testing time
[33].

3.3 Algorithms and Implementation

The algorithms were implemented using Python and popular machine learning libraries such as scikit-learn,
XGBoost, and LightGBM [34]. The steps were as follows:

e Gradient Boosting: Implemented using scikit-learn's GradientBoostingClassifier, the model was fine-
tuned to optimize for both speed and accuracy, with key hyperparameters like learning rate, number of
estimators, and maximum depth being adjusted [35].

e  XGBoost: Using the XGBClassifier from the “xgboost™ library, hyperparameter tuning focused on tree
depth, learning rate, and regularization terms to control overfitting and improve generalization [36].

o LightGBM: Implemented using LGBMClassifier from the ‘lightgbm’ library, this algorithm was optimized
for speed and memory usage, with leaf-wise growth strategies being preferred to depth-wise [37].

e Bagging: Scikit-learn's BaggingClassifier was used with a variety of base estimators, primarily decision
trees, to create an ensemble that averaged out the noise and variance from individual models [38].

e AdaBoost: The AdaBoostClassifier from scikit-learn was utilized, with weak learners being adjusted to
improve performance on hard-to-classify instances in the dataset [39].

o Joting Classifier: The ensemble of classifiers was combined using a hard voting mechanism where each
classifier's predictions were weighted equally.

3.4 Methodology Flowchart Representation

The methodology follows a clear and structured process that begins with dataset preparation and ends with
model evaluation, ensuring a thorough and effective approach to predictive maintenance and anomaly
detection. This linear approach ensures that each step contributes to building a highly accurate and reliable

predictive model for IIoT systems.
= Step 5:
. :B': o%ﬂg:ﬁ Step 4: Evaluation
p ; Metrics

Step 3:
Ensemble
Algorithms

Selecting i « Gradient Boosting Model Training . ADCI-!@C}'
Dataset » Feature Selection . XGBoost yperparamete « Precision
CICIoT2023 » Data « LightGBM ST « Recall
Normalization » Bagging = F1 Score
« Train-Test Split « AdaBoost « ROCAUC

» Voting Classifier

Figure 1. Linear Flowchart Representation of Methodology.

This graphical flowchart effectively organizes the entire process from dataset acquisition to model evaluation,
making the methodology clear and linear.
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e Step I: Dataset - CICI0T2023
The foundation of the analysis is the CICIoT2023 dataset, providing the necessary data for model training
and testing.

e Step 2: Data Preprocessing
Key actions include feature selection, data normalization, and train-test splitting, which prepare the data
for optimal model performance.

e Step 3: Ensemble Algorithms
Multiple ensemble learning techniques (Gradient Boosting, XGBoost, LightGBM, Bagging, AdaBoost,
and Voting Classifier) are implemented to enhance predictive accuracy and robustness.

e Step 4: Model Training & Hyperparameter Tuning
Models are trained and fine-tuned using hyperparameter optimization to achieve the best performance on
the preprocessed dataset.

e Step 5: Evaluation Metrics
The effectiveness of the models is assessed using a range of evaluation metrics: precision, recall
(sensitivity), F1 score, ROC AUC, and accuracy. These metrics are crucial for evaluating the performance
of anomaly detection systems, as they provide a comprehensive understanding of how well the models
distinguish between normal and anomalous instances in IloT environments. Specifically, they help assess
the trade-off between correctly identifying anomalies and minimizing false alarms, which is critical in
predictive maintenance and anomaly detection.

e Accuracy (ACC): Measures the proportion of correct predictions (true positives and true negatives). It
can be misleading with imbalanced data, as it may not reflect effective anomaly detection. The ACC
metric is calculated in Eq. (1):

TP + TN

(1)
TP + TN + FP + FN
e Precision: Indicates the proportion of predicted anomalies that are true anomalies. High precision
minimizes false positives, avoiding unnecessary alerts. The metric is calculated using Eq. (2):
FP
_— 2
FP + TN

e Recall (Sensitivity): Measures the proportion of actual anomalies correctly identified by the model. High
recall ensures most anomalies are detected, important for predictive maintenance.

True Positive / (False Negative + True Positive) 3)

e F1 Score: The harmonic mean of precision and recall, balancing both metrics. It’s useful in imbalanced
datasets, ensuring the model performs well in both detection and accuracy.

2 * ((Precision * Sensitivity) / (Precision + Sensitivity)) “4)

e ROC AUC: Reflects the model's ability to differentiate between positive and negative classes. A higher
AUC indicates better discrimination, especially in imbalanced datasets.

Together, these metrics provide a well-rounded evaluation framework to determine the most suitable model
for anomaly detection and predictive maintenance in IIoT systems, ensuring that the model performs optimally
in identifying anomalies while minimizing false alarms.
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4 Results and Discussion

In this section, we evaluate the performance of six ensemble learning algorithms (Gradient Boosting, XGBoost,
LightGBM, Bagging, AdaBoost, and Voting Classifier) applied to the CICIoT2023 dataset. The performance
of the models was evaluated using key metrics, including accuracy, precision, recall, F1-score, and ROC AUC.
As shown in Table 2, Bagging achieved the highest accuracy (99.750%), while XGBoost demonstrated the
fastest prediction time (7.88 ms), making it ideal for real-time anomaly detection.

4.1 Model Evaluation and Results

Table 2 summarizes the performance of the ensemble learning models applied to the CICIoT2023 dataset.
Bagging achieved the highest accuracy of 99.750%, indicating its effectiveness in generalizing to unseen data.
Meanwhile, XGBoost and LightGBM demonstrated competitive accuracies of 99.633% and 99.676%,
respectively, with significantly faster training times, making them suitable for real-time applications.
Accuracy: Bagging achieved the highest accuracy at 99.750%, which suggests that this model is highly
effective at distinguishing between normal and anomalous instances. This high accuracy indicates that
Bagging is a strong candidate for applications where minimizing false negatives is critical, such as anomaly
detection in [IoT systems.

Precision: Bagging also exhibited excellent precision (99.754%), indicating that it makes very few false
positive predictions. This is crucial in [IoT applications where false alarms could lead to unnecessary
interventions and higher operational costs.

Recall: With a recall of 99.750%, Bagging excels in correctly identifying anomalies. High recall is essential
for ensuring that as many anomalies as possible are detected, particularly in predictive maintenance tasks
where undetected issues can lead to system failures.

F1 Score: The 99.752% F1 score for Bagging indicates a well-balanced model in terms of both precision and
recall. This makes it ideal for real-world applications where both false positives and false negatives need to
be minimized.

ROC AUC: The ROC AUC score for Bagging was 99.972%, reflecting its outstanding ability to discriminate
between normal and anomalous instances. A high AUC is particularly valuable when dealing with
imbalanced datasets, as it shows the model’s robustness across various decision thresholds.

Training Time: Although Bagging achieved the best performance, it required 56,044.94 seconds to train,
which is significantly longer than models like XGBoost and LightGBM. This highlights a trade-off between
accuracy and computational efficiency. While Bagging’s performance is superior, its long training time may
be a limitation in real-time applications that require frequent model updates.

Prediction Time: Bagging’s prediction time was 79.04 milliseconds, which is slower compared to models like
XGBoost (7.88 milliseconds) and LightGBM (29.24 milliseconds). This further emphasizes the trade-off
between the higher accuracy of Bagging and its slower operational speed.

Table 2. Performance Comparison of Machine Learning Models for Intrusion Detection.

ROC AUC Training Prediction

Algorithm Accuracy Precision Recall F1 Score Score Time (s) Time (ms)
Gradient

oo s 99.655%  99.659% 99.655% 99.657% 99.959% 1711325 2048
oosting

XGBoost 99.633% 99.648% 99.633% 99.639% 99.946%  5540.97 7.88
LightGBM  99.676% 99.685% 99.676% 99.679% 99.956%  4069.92 29.24
Bagging 99.750% 99.754% 99.750% 99.752% 99.972%  56044.94  79.04
Classifier

AdaBoost 99.605% 99.615% 99.605% 99.609% 99.948%  6277.16 78.60
Voting 99.716% 99.719% 99.716% 99.717% 99.971%  32072.37 193.59

Classifier




L. Idouglid et al.: Ensemble learning for real-time anomaly detection and... 49

4.1.1  Accuracy

The accuracy of the ensemble models is illustrated in Figure 2. Bagging emerges as the top performer,
achieving an accuracy of 99.750%. This is closely followed by the Voting Classifier, which also demonstrates
strong performance. These results highlight the potential of ensemble methods to improve predictive
maintenance in IIoT systems.

99,2800%
99,750%
99,700%
99,650% : |
99,600%
> HEENHEm
99,500%
Accuracy:
m Random Forest Classifier m Gradient Boosting Classifier
m XGBoost Classifier LightGBM Classifier
m Bagging Classifier m AdaBoost Classifier

Figure 2. Comparison of Accuracy for Ensemble Learning Algorithms on the CICIoT2023 Dataset.

4.1.2  Precision and Recall

Figure 3 compares the precision and recall metrics for the evaluated models. Bagging and Voting Classifiers
consistently exhibit high precision and recall values, underscoring their ability to minimize false positives and
false negatives effectively. This makes these models suitable for high-stakes environments where accuracy
and reliability are paramount

99,800%
99,750%
99,700%
99,650%
99,600%
99,550% I I
99,500%
Precision: Recall:
m Random Forest Classifier = Gradient Boosting Classifier m XGBoost Classifier
LightGBM Classifier W Bagging Classifier ® AdaBoost Classifier

Voting Classifier

Figure 3. Comparison of Precision and Recall for Ensemble Learning Algorithms on the CICIoT2023
Dataset.

- Bagging Classifier: High precision and recall suggest that this model can reliably predict true positives
(correctly classified events) with minimal false positives or negatives. This makes it a strong candidate for
high-stakes environments such as anomaly detection in IIoT.

- Voting Classifier: Similar to Bagging, the Voting Classifier effectively combines the predictions of multiple
models to maintain high precision and recall.

4.1.3  FI Score

As shown in Figure 4, the F1 Score of the models reflects their balanced precision and recall. Bagging leads
with an F1 Score of 99.752%, while LightGBM and XGBoost follow closely. These results emphasize the
reliability of ensemble methods in maintaining high predictive performance.
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F1 Score:

m Random Forest Classifier ~ m Gradient Boosting Classifier m XGBoost Classifier
LightGBM Classifier M Bagging Classifier M AdaBoost Classifier
Voting Classifier

Figure 4. Comparison of F1 Score for Ensemble Learning Algorithms on the CICIoT2023 Dataset.

4.1.4 ROCAUC

The ROC AUC scores of the models are depicted in Figure 5. Bagging and Voting Classifiers achieve near-
perfect scores of 99.972% and 99.971%, respectively, indicating their exceptional capability to distinguish
between normal and anomalous instances. This highlights their robustness for anomaly detection in IIoT
systems.

ROC AUC Scores for Various Algorithms

Voting Classifier 99.971%

AdaBoost 99,048%

Bagging Classifier 99.972%

LightGBM 99.956%

XGBoost 99.946%

Gradient Boosting 99.959%

T T T T T T
99.940 99.945 99.950 99.955 99.960 99.965 99.970 99.975 99.980
ROC AUC Score (%)

Figure 5. Comparison of ROC AUC for Ensemble Learning Algorithms on the CICIoT2023 Dataset.

4.1.5  Training and Prediction Times

Bagging Classifier required the longest training time (56044.94 seconds) due to its nature of training multiple
decision trees on bootstrapped samples. In contrast, Light GBM and XGBoost demonstrated significantly faster
training times of 4069.92 seconds and 5540.97 seconds, respectively, striking a balance between accuracy and
computational efficiency, which makes them suitable for real-time systems. Additionally, XGBoost exhibited
the fastest prediction time at 7.88 milliseconds, followed by Gradient Boosting at 20.48 milliseconds, further
solidifying XGBoost's suitability for real-time anomaly detection and predictive maintenance applications.
Figure 6 shows the training and prediction times for the ensemble models. While Bagging achieves the highest
accuracy, it has the longest training time, making it less suitable for real-time applications. Conversely,
XGBoost exhibits the fastest prediction time of 7.88 milliseconds, offering a practical balance between
computational efficiency and predictive performance.
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Figure 6. Comparison of Training and Prediction Times for Ensemble Learning Algorithms on the
CICIloT2023 Dataset.

The performance of ensemble learning models in IloT environments is determined not just by their
accuracy but also by their computational efficiency. XGBoost stands out for its balance of 99.633% accuracy
and fast prediction time of 7.88 milliseconds, making it ideal for real-time anomaly detection. LightGBM, with
99.676% accuracy and a short training time of 4069.92 seconds, excels in systems requiring quick updates
while maintaining high performance. However, Bagging and Voting Classifiers offer superior accuracy but at
the cost of extended training and prediction times, limiting their use in dynamic, real-time environments.
Selecting the right algorithm depends on application needs. XGBoost is optimal for real-time monitoring in
IIoT networks due to its quick prediction and strong accuracy. For highly sensitive systems requiring maximum
accuracy, Bagging Classifier and Voting Classifier are recommended, despite their longer computational
times. These models are suitable for high-stakes applications, such as anomaly detection in critical
infrastructures, where detection accuracy outweighs speed. LightGBM is an excellent choice for large-scale,
dynamic environments where frequent model retraining is necessary, striking a balance between speed and
predictive performance. Ensemble learning techniques, when applied to IIoT and IDS applications, enhance
both security and operational efficiency. XGBoost and LightGBM excel in fast decision-making and model
retraining, making them ideal for real-time and adaptive systems. Meanwhile, Bagging and Voting Classifiers
provide unparalleled accuracy, best suited for high-stakes environments where precision is critical.

These algorithms collectively offer a flexible range of options, catering to various IloT and IDS
applications, from real-time intrusion detection to predictive maintenance in smart factories, ensuring
improved detection and response capabilities. To further assess the performance of the ensemble learning
models, we compare them with simpler baseline models, such as Decision Tree and Logistic Regression. These
models serve as a reference to highlight the advantages of using more complex ensemble methods. Decision
Tree is a straightforward model that builds a tree-like structure to make decisions based on input features.
While it is easy to interpret, it tends to overfit and lacks the generalization power needed for complex anomaly
detection tasks, especially when the dataset is imbalanced. Logistic Regression is a linear model that predicts
the probability of an instance belonging to a specific class. It is computationally efficient but often struggles
with complex, nonlinear relationships in the data, such as those found in [IoT environments. In comparison,
ensemble methods like Bagging, XGBoost, and LightGBM consistently outperform these simpler models.
These methods leverage multiple base learners, improving generalization and robustness by combining the
strengths of various models. For example, while Decision Trees may suffer from overfitting, Bagging reduces
this risk by averaging multiple decision trees trained on different data subsets. Similarly, XGBoost and
LightGBM improve both accuracy and computational efficiency, especially in large-scale, imbalanced
datasets, making them more suitable for real-time anomaly detection in IIoT systems.

5 Conclusion

This study demonstrates the significant potential of ensemble learning algorithms in improving predictive
maintenance and anomaly detection for IIoT and Intrusion Detection Systems (IDS). Among the models tested,
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Bagging and Voting Classifiers achieved the highest accuracy, making them well-suited for complex detection
tasks where precision is critical. However, their high computational cost limits their applicability in real-time
systems. In contrast, XGBoost and LightGBM strike an ideal balance between accuracy and computational
efficiency, making them more suitable for real-time applications such as continuous monitoring in smart
factories.The findings highlight the importance of selecting the right model based on the trade-off between
performance and operational efficiency. While Bagging excels in accuracy, models like XGBoost and
LightGBM provide faster processing times, which are crucial for dynamic [IoT environments where real-time
decision-making is essential. This research advances the field by demonstrating how ensemble methods can
be adapted to meet the demands of both high accuracy and speed, offering a robust solution for IIoT
applications. Future work should focus on integrating ensemble learning techniques with deep learning models,
potentially creating hybrid models that can further enhance performance by capturing both spatial and temporal
data patterns in IIoT systems. Additionally, the development of lightweight models optimized for edge
computing could help improve real-time decision-making by reducing the reliance on centralized servers,
making anomaly detection more efficient in remote or resource-constrained environments. While this study
relies on the CICIoT2023 dataset, future research should validate these models across more diverse datasets to
assess their generalizability. Exploring unsupervised learning methods would also be beneficial for handling
limited labeled data, which is common in real-world IIoT environments. Overall, this work contributes to
enhancing the security and operational efficiency of IloT systems, laying the groundwork for resilient,
intelligent smart manufacturing systems.
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