Engineering Review, DOI: 10.30765/er.2588

91

A FUZZY CHANCE-CONSTRAINED PROGRAMMING MODEL
FOR MATHEMATICAL MODELING-BASED METAHEURISTIC
ALGORITHMS IN THE DESIGN OF GREEN LOOP SUPPLY
CHAIN NETWORKS FOR POWER PLANTS

Javad Mohammad Ghasemi! — Seyyed Esmaeil Najafi ** — Mohammad Fallah! - Mohammad Reza

Nabatchian'

! Department of industrial engineering, Central tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of industrial engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

ARTICLE INFO

Abstract:

Article history:

Received: 05.08.2024.

Received in revised form: 13.11.2024.
Accepted: 02.12.2024.

Keywords:

This study introduces a multi-cycle supply chain design model,
encompassing crucial executive decisions confronting supply
chain management firms. These decisions encompass facility
location, the flow of raw material procurement, and investments in
diversifying activities within the power plant's supply chain

design. A fuzzy chance-constrained programming approach is
employed to deal with the uncertainties associated demand and
cost, and a service level indicator is incorporated into the
performance metric. The model's validation is conducted on a
larger scale, employing two metaheuristic algorithms, MOPSO
and NSGAIIL. The results revealed that the MOPSO algorithm
exhibited faster computational efficiency than NSGAIl and
demonstrated superior performance in the first and second
objective functions. However, analytical parameters such as NPF,
MSI, and SM favored the NSGAII algorithm over MOPSO. This
study presents a comprehensive multi-cycle supply chain design
model addressing key management decisions, dealing with
demand and cost uncertainty, and evaluating performance using a
service level indicator. The study's findings underscore the
efficiency of the MOPSO algorithm in computational speed but
highlight NSGAIl's advantages in terms of certain analytical
parameters. These insights contribute to enhancing supply chain
management strategies in diverse scenarios.
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1 Introduction

Iran, a global energy powerhouse, boasts an extensive reservoir of energy resources, positioning it as one
of the most influential players in the energy landscape [1]. The nation's impressive portfolio includes over 85
discovered oil fields, solidifying its global prominence [2]. Moreover, Iran stands as the world's second-largest
holder of natural gas reserves, with an estimated 2.616 trillion cubic meters still untapped. Beyond these
abundant fossil fuels, Iran possesses substantial coal reserves [3].

Recognizing the pivotal role of energy in the production processes of various commodities and the
concurrent challenges of its scarcity, the imperative of enhancing energy efficiency has gained prominence
among economic stakeholders [4], [5]. Iran faces the predicament of disproportionately high per capita energy
consumption, attributed to the reluctance to adopt modern technologies across industries encompassing
manufacturing, construction, agriculture, and transportation [6].
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This elevated energy consumption not only exacts an environmental toll but also hinders the trajectory of
sustainable development, incurring substantial economic costs for producing nations [7]-[9]. The confluence
of these factors underscores the urgency of adopting more efficient energy utilization practices and
technologies in Iran, ensuring both economic vitality and environmental sustainability [10], [11].

In recent years, the production of green fuels has seen significant advancements, categorized into distinct
generations [12]-[14]. Consequently, a pressing need arises for developing integrated supply chain design
models that oversee all phases of green fuel production, from raw material procurement to manufacturing and
distribution [15]-[18]. The supply chain encompasses a comprehensive network of facilities, tasks, and
operations involved in creating and disseminating services or products, extending from suppliers to end
customers [19]. It encompasses the strategic orchestration of supply and demand, material procurement,
production, product/service scheduling, storage, inventory management, distribution, delivery, and customer
service [20]. Supply chains are pervasive in manufacturing and service-oriented organizations, though their
intricacy can vary substantially between industries and individual companies [21]-[23].

The essence of a supply chain lies in its role as an integrative process connecting suppliers, manufacturers,
and distributors within an intricate, interdependent framework. In this collaborative ecosystem, the primary
objectives are to harmonize with each organization's overarching policies, minimize inventory levels
throughout the chain, and meet individual customers' unique demands at the supply chain's conclusion [24]—
[27].

Conversely, there exist numerous significant factors contributing to supply chain disruptions, which can
be categorized and outlined as follows [28], [29]: adverse weather and climatic conditions, disruptions in
telecommunications and Information Technology (IT) networks, challenges within the transportation network,
seismic events like earthquakes and tsunamis, and inadequacies in allocating external resources to critical
activities. Moreover, the manifestation of varying event dimensions exerts distinct impacts on organizations.
These elements underscore the imperative for organizations to cultivate and enhance resilient and adaptable
capabilities capable of effectively addressing a spectrum of potential contingencies and events [30].

Hence, applying the supply chain design model within the context of green power plants holds great
potential for large-scale fuel production planning. Nonetheless, one of the foremost challenges in designing
and optimizing such supply chains pertains to the problem-solving approach [31]. This challenge arises due to
the inherent complexity of network design models, often classifying them as intricate matters. Consequently,
only a limited subset of supply chain models related to green fuels can be solved with precision using
conventional methods. The intricacies of real-world scenarios introduce uncertainties into the foundational
parameters of mathematical models, a facet often overlooked in most relevant studies [32]. This research
introduces a noteworthy innovation by applying a problem-stabilization approach to address this challenge.

Moreover, supply chain management within natural environments constitutes a multi-objective decision-
making process guided by expert oversight [33]. Consequently, developing a multi-objective mathematical
model proves indispensable in green fuel supply chains. Accordingly, this paper introduces a multi-objective
model aligned with the green supply chain of photovoltaic power plants while accounting for demand and cost
uncertainties. Lastly, the mathematical model is fortified using the robustness approach to address uncertainties
effectively.

In light of the innovative approach employed to tackle the mathematical model, it is evident that the supply
chain model relating to photovoltaic power plants falls within the category of NP-Hard problems. The
evaluation of this model is conducted through the utilization of metaheuristic algorithms [34], [35], providing
valuable insights into the analysis of the photovoltaic power plant's supply chain.

Assessing the current research landscape on supply chain networks reveals a predominant focus on material
flow and financial analysis [22], [36], [37]. However, a significant research gap emerges in the optimization
of both material and financial flow within the power plant supply chain. The complexities of power plant
supply chains, particularly with regard to demand uncertainty and cost variability, remain underexplored. To
address this gap, a comprehensive approach is required that incorporates a multi-objective mathematical model
capable of managing these inherent uncertainties [38]. Additionally, the stabilization of such models is crucial
for developing robust solutions that can adapt to real-world supply chain complexities. This study introduces
a novel solution by combining Fuzzy Chance-Constrained Programming (FCCP) with multi-objective
metaheuristic algorithms (MOPSO and NSGAII) for optimizing supply chain networks specific to power
plants. Unlike previous works that largely rely on deterministic models or simplified uncertainty handling, our
model comprehensively addresses both demand and cost uncertainties through fuzzy logic. Furthermore, this
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research stands out by integrating environmental sustainability measures, including reverse logistics and green
supply chain practices, which are often overlooked in traditional supply chain models. By using two distinct
metaheuristic algorithms, this study provides a comparative analysis of computational efficiency and solution
quality in large-scale, uncertain supply chain environments. This unique combination of uncertainty
management, sustainability considerations, and algorithmic comparison offers a substantial contribution to the
advancement of supply chain optimization models in the power plant sector.

This paper is structured as follows. Section 2 presents a detailed literature review, focusing on key areas
such as environmental sustainability, economic efficiency, and uncertainty handling in supply chain models.
Section 3 defines the problem and introduces the proposed fuzzy chance-constrained programming model to
address supply chain uncertainties. Section 4 outlines the research findings, including the performance
comparison of the MOPSO and NSGAII metaheuristic algorithms. Finally, Section 5 offers conclusions drawn
from the study and provides suggestions for future research directions.

2 Literature Review

In recent years, the importance of environmental sustainability within supply chain management has grown
significantly. Studies such as [39], [40] highlight the role of green supply chains in reducing carbon footprints
and promoting sustainable energy practices. For instance, Genovese et al. [41] explores the integration of Life
Cycle Assessment (LCA) metrics into supply chains, which allows for a more holistic view of environmental
impacts from raw material procurement to product end-of-life recycling. Additionally, the concept of a closed-
loop supply chain, as discussed in [42], emphasizes the importance of recycling and reusing materials to
minimize waste and environmental harm. These studies align with the current research, which incorporates
green logistics in power plant supply chains and considers the environmental benefits of implementing reverse
flows for recycling.

Economic efficiency in supply chain management remains a central concern, particularly in energy-
intensive industries like power plants. Various studies, including [43], [44], examine strategies for minimizing
costs across transportation, production, and facility placement. The integration of metaheuristic algorithms,
such as the ones used in this study, is commonly explored to address cost minimization in complex supply
chain models [45]-[47]. Additionally, [48], [49] discusses the balance between economic efficiency and
operational flexibility, highlighting the importance of reducing fixed and variable costs while maintaining
service levels. These findings support the current study’s focus on minimizing costs through optimization
techniques in both forward and reverse logistics.

Effectively managing uncertainty is essential in supply chain optimization, particularly when facing
unpredictable factors such as fluctuating demand, variable costs, and supply disruptions. Several studies,
including [50], [51], highlight the importance of fuzzy programming and stochastic programming as tools to
address these uncertainties. Among these, Fuzzy Chance-Constrained Programming (FCCP), proposed by Liu
and Iwamura [52], stands out as a powerful extension of traditional Chance-Constrained Programming (CCP).
By integrating fuzzy logic, FCCP allows for a more flexible and adaptive treatment of uncertain parameters
like demand, costs, and supply availability. Its theoretical foundation stems from the combination of
probabilistic constraints and fuzzy set theory, introduced by Zadeh [53], which models uncertainty not just
through probabilities but by degrees of membership in fuzzy sets. In the literature of Supply Chain
Management, many scholars have adopted FCCP to tackle uncertainties and imprecise data that are common
in supply chains. FCCP is especially valuable in handling unpredictable factors such as fluctuating demand,
uncertain lead times, and variable costs. By integrating fuzzy logic into traditional optimization frameworks,
FCCP allows for more flexible decision-making under uncertainty, where constraints can be satisfied to
varying degrees rather than rigidly.

The application of FCCP in the current study demonstrates its effectiveness in handling uncertainty,
particularly with regard to demand and cost variables, leading to more resilient and adaptable supply chain
models. In parallel, studies such as [54]-[56] explore stochastic programming as a means of managing external
uncertainties, such as fuel price volatility, offering a complementary strategy for mitigating risks in supply
chain operations.

Marhamati [57] explore the food cold chain, which preserves perishable food products through
refrigeration from farm to consumer, maintaining appropriate temperatures to reduce microbial hazards. Their
empirical study of the Australian perishable food industry identifies key impediments and performance
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indicators of FCC Performance (FCCP), examining how these barriers impact FCCP through factor analysis
and structural equation modeling, using data from 292 senior managers in various supply chain roles. Wang et
al. [58] develop a Flexible-possibilist Chance Constraints Programming (FCCP) Model to plan low-carbon
Energy-Transportation Systems (METS) at a metropolitan scale, addressing multiple uncertainties. Applied to
Beijing, the FCCP model reveals increasing reliance on imported power and renewable energy, while the mass
adoption of Electric Vehicles (EVs) significantly reduces carbon emissions. The study highlights the need for
substantial investment in battery supply facilities and emphasizes the FCCP's ability to manage complexities
in power plant planning under uncertain conditions. Fateh et al. [50] highlighted the significant uncertainties
introduced by Renewable Energy Sources (RESs) in Virtual Power Plants (VPPs) and the need for advanced
modeling techniques. They applied FCCP for addressing such uncertainties by providing a flexible framework
that accommodates the variability in RESs. Hanak et al. [59] examined the potential performance of a coal-
fired power plant, considering the continued importance of coal as a primary energy source in the foreseeable
future while emphasizing the need for an environmentally friendly system. The research examines the use of
a stochastic method through probabilistic models to determine the possibility of power plant equipment failure
by employing Monte Carlo simulation. This method is an alternative way to assess the power plant's
performance and forecast significant performance indicators, such as coal consumption and inlet air rates. The
technique also helps to estimate reliability indices (such as the thermal efficiency of the power plant) based on
the power plant process model's input uncertainty. Sahin et al. [60] assessed the performance of a combined
cycle power plant by conducting an exergy-economic analysis, applying the principles of the first and second
laws of thermodynamics. They introduced a comprehensive indicator called the Total Performance Index (OPI)
to gauge and analyze the power plant's ideal operation and design. They included some performance indicators:
Total Investment cost (TI), Energy Efficiency (ENE), Cost of Electricity (COE), and Exergy Efficiency (EXE).
Shen Ho and Lam [61] introduced an innovative optimization method utilizing principal component analysis
to address the multi-layer biomass supply chain problem. This approach encompassed technology selection
and transportation design, considering economic factors, environmental aspects (including various
environmental impacts), and social considerations (such as health, safety, and job creation). Ashtineh and
Pishvaee [62] stated that transportation activities that produce greenhouse gases can harm the environment and
human health. Therefore, sustainability principles dictate that the burden of environmental problems caused
by logistics activities, such as Vehicle Routing Problems (VRP), must be considered. The Pollution Routing
Problem (PRP) is an extension of VRP that involves optimizing the routing of several vehicles to serve
customers. It also determines their speed on each route segment to minimize fuel consumption, emissions, and
driver costs. Saffarian et al. [63] introduced a financial integration and inventory routing model for a closed-
loop two-level supply chain. They devised a mathematical model to address smaller-scale problems.
Recognizing the complexity of larger scenarios, they employed two meta-heuristic methods—genetic
algorithms and particle aggregation optimization—to tackle medium and large-scale problems efficiently.

Wu et al. [64] created a type-2 fuzzy chance-constrained model to optimize water resource management
under uncertainty. Applied to Taiyuan, China, the model highlights a shift to diverse industries and increased
reliance on external water sources. It also suggests that using reclaimed water can enhance water supply
security, supporting sustainable development goals. Huang et al. [65] investigate a decentralized supply chain
network with uncertain costs, focusing on optimizing enterprise decisions under this uncertainty. They employ
a chance-constrained approach and formulate the problem as a second-order cone-constrained variational
inequality model. Their analysis reveals that retailers' and manufacturers' risk attitudes significantly influence
their decisions and profits, with high risk tolerance leading to greater impacts on decision-making.
Additionally, adopting a chance-constrained method is beneficial when supply chain members can estimate
competitors' strategies.

3 Definition of the Problem

This research uses a closed-loop supply chain network of producers (power plant raw materials including
fuel oil, etc.), distribution centers and customers (power plants), recycling centers, and recycled product
customers to minimize and maximize green logistics costs. It is designed to respond to the demands of two
forward and reverse flows of the supply chain of green energy production.

Manufacturers dispatch their products to both distributors and customers, including power plants.
Customers also have the option to obtain products from distributors. In this network spanning several periods,
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a portion of the energy production of raw materials generates waste at these three levels. These waste materials
are then routed to a fourth level, the recycling centers, where they undergo reprocessing. After reprocessing,
they are further directed to a fifth level, comprising recycling customers. Furthermore, it's worth noting that
the first level of this chain can also be viewed as a subset of the fifth-level customers, highlighting the closed-
loop nature of this network.

A single-product, dual-objective, and multi-period programming model has been developed to design the
power plant logistics network. On the one hand, the developed model aims to minimize network costs,
including the fixed cost of establishing distribution centers, transmission, inventory maintenance, and
operational costs. On the other hand, it maximizes customer demand response in both the forward and reverse
sectors.

As we mentioned above, in this study, the two primary objectives—minimizing costs (OF1) and
maximizing responsiveness (OF2)—are central to the design of an efficient closed-loop supply chain network
for power plants. However, these objectives often present competing priorities: while cost minimization
focuses on reducing expenditures across various aspects of the supply chain (such as transportation, processing,
inventory, and operational costs), maximizing responsiveness emphasizes the ability to quickly meet customer
demands and adapt to uncertainties in demand and supply. The trade-off between these objectives stems from
the fact that increasing responsiveness often incurs higher costs. For example, improving responsiveness may
require more frequent shipments, additional inventory holding, or investing in more expensive, faster
transportation modes—each of which raises operational expenses. On the other hand, minimizing costs
typically involves reducing resource allocation, transportation frequency, or inventory levels, which can slow
response times and reduce flexibility in the supply chain.

To address this inherent trade-off, the model uses a multi-objective optimization approach, where the
interaction between the two objectives is explicitly modeled. Specifically:

1. The cost minimization objective (OF1) accounts for the fixed costs, transportation, inventory, and
operational expenses involved in the supply chain. Reducing these costs is essential to maintaining
profitability but must be balanced against maintaining a sufficient service level.

2. The responsiveness maximization objective (OF2), on the other hand, aims to ensure timely fulfillment
of customer demand while incorporating the capability to process recycled products efficiently. This
is critical for green supply chains that must handle both forward and reverse logistics flows.

To achieve a balanced solution, the epsilon-constraint method is employed, where one objective (typically
cost minimization) is incorporated as a constraint while the other objective (maximizing responsiveness) is
optimized. By adjusting the bounds on the cost constraint, the model can generate solutions that represent
different levels of trade-offs between cost efficiency and responsiveness. Additionally, the MOPSO and
NSGA-II algorithms, which are used to solve the model, allow for the exploration of the Pareto front, a set of
optimal solutions where no objective can be improved without worsening the other. This enables decision-
makers to evaluate different scenarios along the Pareto front and select a solution that best aligns with their
priorities—whether it is minimizing costs, maximizing responsiveness, or finding a balanced compromise
between the two. By expanding the discussion on these trade-offs, we highlight that the optimization process
does not merely seek to improve one objective at the expense of the other. Instead, the model carefully balances
both objectives, offering flexible decision-making options depending on the strategic importance of cost
savings versus service level performance in a particular context. Therefore, this research has developed a new
mixed integer linear programming mathematical model for the power plant logistics network, which we will
be described in the next subsection below.

3.1 Problem modelling

In this section, the assumptions of the problem are presented first. Then, in the following, we will describe
the novel two-objective model after introducing the parameters, indices, and decision variables.
For better efficiency of the problem and to be close to the real world, the following assumptions are
considered:
1. The five-level energy distribution network includes (producers of materials needed by power plants,
distributors, customers, recycling centers, and customers of recycled products).
2. Producers' production is not precisely known, and it is considered a decision variable smaller than the
maximum production capacity of power plants.
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(98]

The j index for the distributor includes both existing points and potential points.

4. Product transportation cost between network levels is obtained based on the distance between points.

It is assumed that a type of transportation equipment with a specific capacity and cost is available.
Only distributors can store the raw materials of power plants.

e

6. To reduce the model complexity, the model has been designed as a single product as raw materials for
power plant energy production.

7. It is not possible to transfer raw materials between distributors.

8. It is not possible to move between producers (power plants) or between customers.

3.2 Model symbols

The following symbols are used to develop the proposed mathematical model:

Indexes:

i=1,2,
j:I)2)
k=1,2,

1=1,2,.

Production sites for raw materials

ol
...J  Candidate and fixed points of distribution locations
K

Customer locations (power plants)

..,L.  Candidate and fixed points of recycling places

t=1,...T Periods

0=1,2,...,0 Recycling customer locations
Parameters:
f; The j* distribution center's establishing fixed cost.
fi The 1" recycling center's establishing fixed cost.
Cx, ;  Transportation cost from manufacturer i to distributor j.
Cs,  Transportation cost from manufacturer i to customer k.
Eﬂd]k Transportation cost from distributor j to customer k.
Cey, Transportation cost from customer k to recycling center 1.
fﬁ; Transportation cost from distributor j to recycling center 1.
Cv,  Transportation cost from producer i to recycling center 1.
Cf,,  Transportation cost from recycling center | to compost market o.
Cg,  Transportation cost from recycling center | to producer i.
Ch,  Product holding cost by distributors in time t.
Cp,  Product processing and packaging cost in time t.
Cry Recycling centers' production cost in time t.
Cp’  Product production cost by manufacturers.
dy;  The k™ customer demand in time t.
Ac;;  The maximum capacity of producer i in time t.
Ah; The j* distributor's storage capacity.
An The 1" recycling center's Production and storage capacity.
a The percentage of waste materials produced by the manufacturer in time t according to the
t parameters of greenness of the raw materials.
0 The percentage of raw materials waste stored by the customer in the time t according to the
¢ parameters of greenness of the raw materials.
The percentage of raw materials waste stored by the distributor in the time t according to the
Be parameters of greenness of the raw materials.
i, Demand for reprocessed/recycled products by customers o in time t.
p Weighting factor (importance) to respond in forward flows.
1—p Weighting coefficient (importance) to respond in backward flows.
[ A percentage of waste products that can be sold to customers.
M A vast positive number.
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Decision variables:

Xijt
A
Sikt
Ukt
Ekie
Qjie
Vite
Gt
Ih]t
1
wi{y

iy
Flot

A quantity of raw materials sent from producer i to distributor j in time t.

The amount of raw materials produced by producer i in time t.

A quantity of raw materials sent from producer i to customer k in time t.

A quantity of raw materials sent from distributor j to customer k in time t.

A quantity of waste raw materials sent from customer k to recycling center | in time t.

A quantity of waste raw materials sent from distributor j to recycling center 1 in time t.

A quantity of waste raw materials sent from producer i to recycling center | in time t.

A quantity of reproducible raw materials sent from recycling center 1 to producer i in time
t.

A quantity of processed raw materials held in the distributor j's warehouse in time t.

One, if the distribution center is established in candidate location j, zero otherwise.

It is one if the recycling center is established at candidate location 1, zero otherwise.

A quantity of recycled raw materials sent from recycling center | to market o in time t.

Also, to better understand the position of decision variables, the network schematic structure, and the used
variables are presented in Figure 1.

Sik
|
Xij Ujk
> I > J > K
Vi
Q i
It Ep
0 . L
Flo
Gy

Figure 1. Schematic of the proposed network along with the decision variables.

3.3 Proposed model

According to the problem definition and considering the assumptions, the mathematical model is
developed to minimize supply chain costs, including transportation, distribution centers' building potential
locations, inventory maintenance and production and processing, and maximizing demand response.

Objective functions

This model consists of two objective functions (OFs): minimizing cost (OF;) and maximizing
responsiveness (OF>).

minzZ =z, +2z, + 23+ 2z, 08
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Z3=221hjt*éﬁt (4)

j=1t=1
1 J T L T O 1t

Z4=zzzxi‘itXEﬁt+ZZZF10tXﬁt+zzlitxcﬁ (5)
i=1j=1t=1 1=1t=10=1 i=1t=1

Equation (1) is the cost minimization, which is a total of 4 types of costs presented in relations (2) to (5).
Fixed costs of establishing distribution and recycling centers are included in relation (2). It is important to note
that existing and potential points can serve as distribution and recycling centers. To achieve this, we consider
the construction costs of existing points in zero parameters instead of adding an index. In relation (3)
transportation costs, including forward and backward, and in relation (4) the costs of storing processed products
are included. In relation (5), operational costs, including processing and packaging and open processing costs,
are given.

o (Zg;l Y1 Yoy Sike + 211 XK= 121:1 Ujkt) 4
(2 1Zk 1die)
L o

+(1_p)x<iz , Flot) (Zz )

t=11l=1o0

maxZ' =

(6)

Equation (6) describes the second (maximization) objective function OF,. The response is segmented into
two groups: the main product (power plants) and the reprocessed product.
Constraints:

In this mathematical model, there are 18 restrictions as follows.

] K L
luX(l—at)=ZXijt+ZSikt—ZGm VieELVteT (7)
j=1 k=1 =1

Equation (7) shows the amount of production by producers with the deduction of waste equal to the amount
of transfer from producers to distributors and the target market (power plants).

Xijp <M XW; Vje],teT (8)

-

=1
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Also, relation (8) is a constraint related to relation (7), emphasizing that sending loads to potential
distributors is done if that place is built.

Air < Acy )

Equation (9) indicates that smaller producers' production equals their maximum capacity.

1 K L
i=1 k=1 =1

According to Equation (10), the inventory level of the distributors’ warehouse in any given period is
determined by subtracting the amount of waste from the previous period from the inventory level of the last
period and then adding the new products that have entered the warehouse while also subtracting the number
of foreign products that have been moved from the warehouse to the processing and packaging line.

Thjy < Ahj X W; VjieJ, VteT (11

Equation (11) indicates that the smaller distributor's maximum inventory equals the warechouse capacity.

J
2, U+
j=1

Equation (12) means that in each more significant period, the market demand equals the products imported
from producers and distributors.

Sikt < dpt VkEKVLET (12)

1
i=

1

L
va=atx/1it VielLvteT (13)
=1

I
Ve SMXY, VIELteT (14)
i=1
L
Zletz.BtXIhj(t—l) VjeJ,VtEeT (15)
=1
J
ZletSMxYl VIELtET (16)
j=1

L J K

zEklt:Htx(injt-l_zSikt) VkEeEKVLteT (17)

=1 =1 k=1

K
Ege SMXY, VIELLtET (18)
k=1



J. M. Ghasemi et al.: A fuzzy chance-constrained programming model... 100

Equations (13) to (18) specify that in each section, the amount of waste for the reverse flow is shown in
the case of the construction of recycling centers.

1 J K 0
D Vit D Qut Y Eue |x@=) Foe  VIELVEET (19)
i=1 =1 k=1 o=1

Equation (19) states that the combined amount of waste generated by the producer, distributor, and
customer, when multiplied by the waste conversion rate, equals the total recycling sent to recycling markets
and customers.

0
ZFlot SATIXYI VlEL,VtET (20)
o=1

Equation (20) indicates that the total amount of recycled materials sent to the market and smaller customers
is equivalent to the recycling centers' production capacity.

L
ZFM <d’, Vo€EO, teT Q1)
=1

Equation (21) indicates that the total recycled materials sent to the market and smaller customers are
equivalent to the recycled customers' demand.

I ] K I
z Vite—1 + Z Qiit-1 + z Ejgt—q | X (1 —9) = Z Gy VIELVteT (22)
i=1 = k=1 i=1

Equation (22) indicates that a percentage of waste products that can be reproduced will be sent to the
production center in the next period.
Y,,W;e{0,1} VIeEL,Vj€] (23)

Xijt , Sikts Ujkt! Viit, let’Eklt’Flot >0 VoeOViel,Vje], VvkeK,vteT,VIeL (24)
Ihj; =0 Vie], vVteT (25)
Relations (23) to (25) indicate the sign variables or zero and one variables and their positivity.

3.4 Solution approach

In this study, uncertainty in key parameters such as cost, demand, and transportation are captured using
trapezoidal fuzzy numbers. Trapezoidal distributions are selected because they allow for flexibility in modeling
uncertainty by defining four critical points: @ = (d,, d,, s, d,). These points represent the lower limit, lower
mode, upper mode, and upper limit of the parameter, respectively, and are particularly suited to situations
where precise parameter values are unknown but can be estimated within a bounded range (see Figure 2).

The selection of trapezoidal fuzzy numbers is justified by both the availability of historical data and expert
judgment. For instance, in cases where there is incomplete or imprecise data regarding demand or cost, domain
experts provide estimates that define the likely range and spread of uncertainty. The use of fuzzy distributions
helps incorporate this uncertainty into the model without requiring exact point estimates, making it more robust
for real-world applications. To construct the basic fuzzy chance constraints, we employed the Fuzzy Chance-
Constrained (FCCP) approach to model the uncertain parameters. The Necessity (Nec) scale is used to
transform fuzzy chance constraints into equivalent deterministic equations, ensuring that constraints are
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satisfied to a specified degree of confidence. Additionally, the expected value approach is applied to manage
uncertainty within the objective function, providing a more robust representation of uncertain parameters by
averaging their possible values. The expected value approach smooths out variations by averaging the
trapezoidal fuzzy numbers, reflecting realistic ranges of costs and demand, while the Nec scale transforms
fuzzy constraints into deterministic equivalents, ensuring that constraints are satisfied to a predefined
confidence level. By clearly defining the fuzzy parameters and their justification, we ensure that the model can
handle real-world uncertainties effectively, making the model more reliable for decision-making under
uncertainty.to explain the mathematical process To explain the mathematical process of the optimization
problem and how fuzzy parameters are incorporated, let's break down the problem. Consider the following
optimization problem:

MinZ = fy + cx
Subject to: Ax = d

(25)

Suppose the vector f (fixed costs) is a deterministic parameter, while the vectors ¢ (variable costs) and d
(demand) and the matrix N are uncertain parameters of the problem. To construct the basic fuzzy programming
model with chance constraints, as we mentioned earlier, we used the "expected value" approach to model the
uncertain parameters of the objective function and the Nec scale to model the chance constraints.

The Nec scale can be directly used to convert fuzzy chance constraints into their equivalent deterministic
equations (Equation (27)). In this paper, we used a trapezoidal fuzzy distribution in the model because it can
define four critical points @ = (@4, d,, 3, a4 ) (see Figure 2).

&

l e -

AN

-

1 G 33 4

Figure 2. fuzzy parameter a.

Min E[Z] = E[f]ly + E[¢]x
Subject to:Nec{Ax = d} > a, VmeM
Nec{Bx = J}Zam VvmeM
Nec{Sx < IVy}Z A,
vmeMY € {01}

x =0

27)

Since the objective function and constraints have uncertain parameters and are considered with fuzzy
distributions, and given that the constraints with uncertain parameters must be satisfied with at least an «,,
satisfaction level, the deterministic model can be defined as Equation (28):

cit+c,+c3+c
MinE[Z] = fy + ( ! 24 > 4>x

Subject to: Ax = (1 —a,,)d; + apdy

(28)
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a a
Bx < (Tm)d3+(1 —7’”)@

a a
Bx;z(i?)d2+(1—-7?)d1
Sx < [(1 —ap)Ny + ay,N{ Y

Y € {01}x =0

Given the explanations provided above, the crisp equivalent of the proposed multi-objective mixed-integer
linear programming model can be expressed as follows:

min E[Z] = E[z1] + E[z,] + E[z3] + E|z4] (29)
J L
1+ fiatfistf +fio + fis +
Elz,] = Z (i1 + fiz ! fiz + fia) W, +z (fu + fiz : fiz + fia) <Y, (30)
j=1 =1
L (Cxiy + Cxigy + Cxigs + Cxiia)
Xii Xii Xii Xii
E[z,] = ZZ ij1 ij2 j ij3 ija XXijt n
i=1j=1¢t=1
L &L (Cujpq + Cujpp + Cuj, + Cujpy)
+ z z Z jk1 jk2 i jk jk4 x Ujkt +
j=1k=1¢t=1
L & & (Csir + CSin + Cis + Cie )
S; S; S; S;
+ z ikl ik2 i ik3 ik x Sikt +
i=1 k=1t=1
L & (Cvy + Coygy + Coygs + Cvg )
v; v; v; v;
+zzz il il2 . il3 il x Vilt +
i=11=1t=1 ; 31
L T
(Cqjin + Cqjiz + Cqjiz + Cqjia)
T XX
j=11=1t=1
Sy (Cegp1 + Ceyz + Cepz + Cepa)
+Z Z ki1 kl2 j ki3 kl4 X Epge +
k=11=1t=1
L T 0
(Cfio1 + Cfio2 + Cfioz + Cfioa)
+ 2 X Fiot
1=1t=10=1
L T 1
(Cgii +Cguiz +Cuiz + Cgria)
+ 2 X Gyt
I=1t=1i=1
Ch1+Chey+Ches+Ch
E[Z3] — Z§=1Z{=1 [h]t *( t1 t‘Z4 t3 t4) (32)
Loy (CPyy + CPyy + CPys + CPus)
Elz,] = 22 EXUT % D1 Dt2 j Dt3 Dta "
i=1j=1¢t=1
Sl (Crpq + Cripy + C13 + C1yy)
n Zz Fpye X t1 t2 . t3 220 (33)
1=1t=10=1
I t, 1 ! 1 !
(Cp' +Cp',+Cp',+Cp',)
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(25’:12 —1 %=1 Sike + Li=1 Tk 1Z§ 1Ujke)

max E[Z'] =
ZT ZK (dkt1 + dktz + dkt3 + dkt4)
' 4 (34)
T L O T O
d, +d,,.,+d
+(1 _ p) % <Z Z Z 10t> <Z Z ( 0t1 Otz ot3 0t4)>
t=11=1o0=1 t=10=1
]
DU+ ) Sue St ds+ (= @) diy  VEEKVEET (35)
= i=1
L
EFlot < a, d:)t3 + (1 - az) d:)t‘l- Yo € 0, teT (36)
=1
s.t. constraints 7-11,13-20,22-25 (37)

Please note that in this paper, we use a confidence level of 90% for both chance constraints, denoted as
ay = a; = 0.90

4 Research Findings

This article seeks to develop a five-level green closed-loop network of customers (power plants),
producers, recycling centers, distributors, and customers of recycled products. The model has been validated
by the epsilon constraint method and MOPSO and NSGA II algorithms. In this method, OF is included as a
constraint, and the second is considered a constraint. The size of the numerical example in the validation
section consists of three producers, four distribution centers, four recycling centers, and two customers of
recycled products. The selected cities for each location in this issue are shown in Table 1. Also, the
transportation costs used between cities for all matters are taken from Table 2.

Table 1. Selected cities for each index.

0 1 k i i

1 3 7 10 14
4 8 11 15
5 9 12 16
6 13

Table 2. Transportation cost between cities (dollars/km,).

3 4 5 6 7 8 9 10 11 12 13 14 15 16

37 49 90 125 128 194 208 178 152 205 192 213 304 341 437 477
49 37 53 87 90 173 173 301 114 170 171 178 238 307 403 442
90 53 37 46 49 131 138 114 80 95 130 172 118 269 365 398
125 87 46 37 71 131 145 70 85 99 135 183 131 247 343 409
28 90 49 71 37 94 123 80 82 97 128 173 126 235 334 404
194 173 131 131 94 37 44 166 131 181 181 191 187 316 412 451
208 173 138 145 123 44 37 178 164 202 197 220 217 338 425 464
178 301 114 70 80 166 178 37 46 39 78 59 56 194 290 329
152 114 80 85 82 131 164 46 37 73 61 89 90 206 301 341

Q
2
(V]

O 00 3 O W A W N =
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Cty 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 205 170 95 99 97 181 202 39 73 37 29 39 41 181 274 282

11 192 171 130 135 128 181 197 78 61 29 37 56 58 174 257 296
12 213 178 172 183 173 191 220 59 89 39 56 37 32 152 183 279
13 304 238 118 131 126 187 217 56 90 41 58 32 37 133 202 291
14 341 307 269 247 235 316 338 194 206 181 174 152 133 37 109 152
15 437 403 365 343 334 412 425 290 301 274 257 183 202 109 37 54
16 477 442 398 409 404 451 464 329 341 282 296 279 291 152 54 37

Also, for the first problem, other parameters are shown in Table 3. In addition, ¢, p, and M are equal to
1.1, 0.6, and 10", respectively. Also, the value of cp’ is assumed equal to 170, and the values of f; for this
problem are equal to 0, 0, 114290, 180000, and the values of f; This problem is considered equal to 0, 0, 14285,
20000.

Table 3. Parameters related to the first problem.

Parameter Index ¢ t, ts ty te te ty tg
ch; - 58 58 60 63 63 66 68 72
cp: - 86 89 89 91 94 94 100 103
cTy - 86 86 100 100 100 115 129 137
kq 3 4 3 7 8 5 10 8

dye k, 3 35 38 6 75 48 48 65
ks 3 32 35 5 5.5 4 10 2
i 30 20 70 0 0 0 0 0
Acie i, 90 11 45 0 0 0 0 0
i3 95 50 80 0 0 0 0 0
j. 10 10 10 0 0 0 0 0
I j, 20 20 20 0 0 0 0 0
It Js 10 10 10 0 0 0 0 0
Ja 30 30 30 0 0 0 0 0

ly 4 4 5 43 4.8 53 52 10
[, 53 4 49 53 5.7 4.1 69 7.1

A I, 83 4 46 73 45 63 47 10

, 641 435 5 6 55 10 92 831
a - 01 012 015 0 0 0 0 0
B, - 002 002 003 003 0035 004 0.045 0.05
6, - 002 0.03 0.04 0045 0.045 0.048 0.5 0.05
. oo 10 20 18 15 14 6 719 85
ot

0, 15 20 16 153 1436 20 6.78 7

After introducing the data related to the first problem, it is time to express the remaining parameters for
other problems, as shown in Table 4.

Table 4. The remaining model parameters' values.

Unit Quantity Parameter
period (month) 8 T
Percent [0.1,0.12,0.15,0,0,0,0,0] ot
Percent [0.2,0.02,0.03,0.03,0.035,0.04,0.045,0.05] St
Percent [0.02,0.03,0.04,0.045,0.045,0.048,0.05,0.05] ot
Percent 1.1 ®
Percent 0.6 P

Percent 0.4 1-p
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Unit Quantity Parameter
Ton Uniform ~ [30,100] Acit
Dollar Uniform ~ [114290,185715] f
Dollar Uniform ~ [14285,22855] 1l
Dollars/ton [58,58,60,63,63,66,68,72] cht
Dollars/ton [86,89,89,91,94,94,100,103] cpt
Dollars/ton [86,86,100,100,100,115,129,137] crt
Dollars/ton Uniform ~ [143,172] cp'
Ton Uniform ~ [3,10] dkt
Ton 10 or 20 or 30 Ahj
Ton Uniform ~ [4,10] Art
Ton Uniform ~ [5,20] d'ot

According to the presented mathematical model, MOPSO and NSGAII algorithms have been used to
evaluate the given mathematical model using the epsilon limitation method. Therefore, before analyzing
numerical examples with NSGA II and MOPSO methods, the problem's initial solution (based on priority) has
been defined. Thus, the initial answer is presented at this section's beginning. The meta-heuristic algorithms'
parameter setting with the Taguchi method has been discussed at the end of the section.

4.1 Initial solutions

The proposed model used in this article is highly complex, so modified priority-based decoding is
employed. This coding is based on a natural numbers’ permutation, which corresponds to the number of nodes
at each level of two levels of the supply chain network. Figure (2) displays the modified priority-based coding
for one of the network levels, which has three central distribution centers and four fixed demand centers. In
the Figure, the encoding is shown as (6-1-4-7-3-5-2), where the priorities of (6-1-4-7) are related to fixed
demand centers, and (3-5-2) are associated with the central distribution center. To decode the initial answer to
the problem, follow these steps:

1. The highest priority can be selected considering the distribution centers/demand points.

2. The distribution center/demand points determine the lowest shipping cost.

3. The selected center's minimum demand and capacity are calculated as the amount of transferred

product.

4. Demand quantity and capacity are updated after allocation.

5. If'the capacity or demand becomes 0, its priority will be reduced to zero.

6. This action is calculated until all the demand priorities, or the capacity is not reduced to 0.

Distribution centres Demand centres (customer)
Node 1 2 3 1 2 3 4
Priority 2 5 3 7 4 1 6

Figure 2. How to encrypt and decrypt based on priority.

The initial solution provided is only for two levels of a supply chain network; due to the multi-level nature
of the closed-loop supply chain network design in this article, the initial solution should be calculated for each

level.

4.2 Parameter setting of meta-heuristic algorithms

We use a response variable, a combination of four criteria, to set the parameter. To calculate its value, we
use the following formula. Since the requirements have varying levels of importance, we determine the weight
coefficients used for them.

_ NPF;, + MSI, + SM; + CPU — time (38)
B wy+wy +ws +wy

i
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In the above relationship, NPF is the number of effective solutions, MSI is the maximum extent, SM is the
distance metric, and CPU-time is the computing time. To adjust the parameter of the NSGA-II algorithm, we
defined the factors and their level considering Table 5.

Table 5. Factor levels used for NSGA-II algorithm.

Parameters Level 1 Level 2 Level 3
nPop 50 70 100
pc 0.2 0.5 0.8
pm 0.2 0.3 0.4

Using Minitab software and the standard Table of orthogonal arrays in the Taguchi method, we selected
L9(34) orthogonal arrays as the best design for models three to six. The orthogonal arrays of this design are
shown in Table 6.

Table 6. L9(34) orthogonal arrays for NSGA-II algorithm.

Test number nPop Pc Pm
1 1

O 00 IO\ DN bW
W W WNNN = —
W N = W N = W
N — W= W N WK —

Since in each problem, the value of R; differs and cannot be used directly, the relative percentage deviation
(RPD) is applied.
Algsol — Ming,;

RPD = x 100
Ming,, (€2))

In the given relation, Algs, and Minso represent the R; values obtained during each experiment iteration
and the best solution obtained, respectively. R; value is converted to RPD, and the S/N ratio is computed based
on RPD, according to the Taguchi parameter design structure. Then, the average S/N ratio of all experiments
is computed for each parameter level. The optimal levels of factors result in the minimum ratio of the desired
average, i.e., each parameter's best value has the lowest average value of the averages. After running the
Taguchi test, the results, average means, and average S/N ratio for each level of factors in the NSGA-II
algorithm for the model are shown in Figures 3 and 4.

Main Effects Plot for Means
Data Means

nPop Pc Pm
5000

4000

3000
2000 /\ //
1000

1 2 3 1 2 3 1 2 3

Mean of Means

Figure 3. Plot of mean averages for NSGA II algorithm.
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Main Effects Plot for SN ratios
Data Means

nPop Pc Pm
-30

-60

Mean of SN ratios

-70

1 2 3 1 2 3 1 2 3

Signal-to-noise: Smaller is better

Figure 4. Plot of average S/N ratio for NSGA II algorithm.
Figures 3 and 4 indicate that the NSGA-II algorithm factors optimal level is equal to:

Table 7. Factors optimal levels (NSGA-II)

Levels of factors Optimum
Parameters 1 2 3 factor level
nPop 50 70 100 70

pc 0.2 0.5 0.8 0.2

pm 0.2 0.3 0.4 0.2

Table 8 defines the factors and their levels for the MOPSO algorithm, and Table 10 defines the orthogonal
arrays relating to Table 9.

Table 8. Factor levels used for the MOPSO algorithm.

Parameters Level 1 Level 2 Level 3
nPop 50 75 100
nRep 70 100 150
w 0.5 0.6 0.7
Cl 1 1.25 1.5
c2 1 1.25 1.5

Table 9. L9(3’) orthogonal arrays for MOPSO algorithm.

Test Number nPop nRep W Cl1 (2
1 1 1 1 1 1
2 1 1 1 1 2
3 1 1 1 1 3
4 1 2 2 2 1
5 1 2 2 2 2
6 1 2 2 2 3
7 1 3 3 3 1
8 1 3 33 2
9 1 3 3 3 3
10 2 1 1 1 1
11 2 1 1 1 2
12 2 1 1 1 3
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Test Number nPop nRep W ClI (2
13 2 2 2 2 1
14 2 2 2 2 2
15 2 2 2 2 3
16 2 3 3 3 1
17 2 3 3 3 2
18 2 3 3 3 3
19 3 1 1 1 1
20 3 1 1 1 2
21 3 1 1 1 3
22 3 2 2 2 1
23 3 2 2 2 2
24 3 2 2 2 3
25 3 3 3 3 1
26 3 3 3 3 2
27 3 3 3 3 3

After conducting the Taguchi test, the results display the average means and S/N ratio for every factor
level in the MOPSO algorithm in Figures 5 and 6.

Main Effects Plot for Means
Data Means

Ll

1500

Mean of Means
8

Figure 5. The plot of mean averages for the MOPSO algorithm.

Main Effects Plot for SN ratios
Data Means

nPop nRep w

a c2
-61
-62
® \\'
-64
-65
3 1 2 3 1 2 3

Mean of SN ratios

-68
1 2 ) 1 2 g 1 2

Signal-to-noise: Smaller is better

Figure 6. Average S/N ratio plot for MOPSO algorithm.
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According to the above graphs, the optimal level of factors has been obtained as described in Table 10:

Table 10. The MOPSO algorithm factor levels.

Levels of factors

Optimum factor level

Parameters 1 2 3
nPop 50 75 100 100
nRep 70 100 150 70
w 05 06 0.7 0.7
Cl 1 1.25 1.5 1
C2 1 1.25 1.5 1

After designing the initial solution and setting the parameters of the meta-heuristic algorithms, the
numerical example has been analyzed. The maximum number of repetitions in meta-heuristic algorithms is
equal to 100. Table 11 displays the average and results from NSGA II, MOPSO, and the epsilon method of the
limit.

Table 11. Meta-heuristic algorithms compare indices in the sample problem.

Indicator Epsilon Constraint NSGA II algorithm MOPSO algorithm
Computational time 97.68 18.88 6.64
The average of the OF, 563498.02 573954.21 569563.94
Average of the OF; 49716.35 49622.11 49371.86
NPF 6 10 9
MSI 35686.25 36643.30 35751.92
SM 0.76 0.476 0.381

Based on the data presented in Table 11, it can be observed that the MOPSO algorithm takes less
computational time compared to the NSGA II algorithm and the epsilon constraint method when solving the
sample problem. However, the NSGA II algorithm performs better when finding the number of efficient
solutions than the MOPSO algorithm and the epsilon method. The results of Table 11 demonstrate the
effectiveness of meta-heuristic algorithms in achieving near-optimal solutions quickly without compromising
accuracy. The Pareto front obtained from solving the example problem is illustrated in Figure 7.

x10*
55 % T T
* NSGAIl
54 r * % * MOPSO 7
* %  Epsilon Constraint
531 b
*
52 r * J
*
51r 1
N * i
5r * J
*
49 r * % 1
48+ x ¥ .
L * *
4.7 % i
*
46 1 1 1 1 1 1 1
55 5.55 5.6 5.65 5.7 5.75 5.8 5.85 59
Z1 x10°

Figure 7. Pareto front of the small-size problem.
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4.3 Sample problems (larger sizes) applying NSGA Il and MOPSO

To tackle sample problems on a larger scale, a set of 15 sample problems has been created using random
data based on a uniform distribution. For each sample problem, five problems of the same size have been
created within the defined data range. The averages of each index have been evaluated and compared to provide
a basis for comparison. The significance of the difference between the averages of each index has been
evaluated using the T-Test statistical test. Finally, the TOPSIS method has been used to determine the most
efficient algorithm for solving the problem of the closed-loop supply chain network. The problem sizes were
randomly generated using MATLAB software.

Table 12. Dimensions of the problem.
Issuenumber I J K L O

1 3 4 3 4 2
2 S 7 5 7 4
3 7 10 7 10 6
4 9 13 9 13 8
5 15 22 15 22 14
6 17 25 17 25 16
7 19 28 19 28 18
8 25 37 25 37 24
9 35 52 35 52 34
10 37 55 37 55 36
11 39 58 39 58 38
12 41 61 41 61 40
13 45 72 45 65 45
14 50 75 48 68 48
15 53 78 50 70 50

To solve each sample problem to prevent random data generation, five other problems in the same
generation and with the problem were solved, and the average of the calculation results was utilized as the
evaluation and comparison basis. Tables 13 and 14 show the average OFs and meta-heuristic algorithms

comparison indices.
Table 13. Average OFs and comparison indices (NSGA 1)

Number of The index of the

Sample OF, OF effective greatest D.istance Comp}ltational
problem . . index time
solutions expansion

1 633806.72  62601.70 9 270273.91 0.37 34.46
2 778692.87  78381.54 19 585593.25 0.77 108.00
3 881581.31  85446.74 20 479316.63 0.70 170.30
4 1033814.58  90080.84 14 850298.87 0.57 242.53
5 1674913.50  103382.09 14 1129077.89 0.41 335.50
6 2369557.62  114251.75 22 1508175.51 0.55 434.40
7 2500890.63  125554.34 23 1797128.03 0.53 545.77
8 3416474.10  132080.49 18 2739770.014 0.57 669.07
9 430193598 140272.83 21 2529228.60 0.40 819.60
10 4860023.44 159821.22 23 3529017.44 0.75 959.67
11 5040590.70  163061.03 23 3087180.76 0.74 1040.13
12 8540218.42  178342.69 23 4883033.12 0.69 1326.00
13 8887924.17 182872.57 30 3839628.23 0.66 1528.37
14 10361985.83 193154.36 21 4564232.62 0.77 1802.27

15 12608666.41 207290.80 24 5383709.71 0.87 2640.00
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Table 14. Average OFs and comparison indices (MOPSO).

Sample Numbe_r of  The index of the Distance ~ Computational
problem OF, OF, effec.tlve greate.st index time
solutions expansion

1 635858.69  60567.22 8 109850.13 0.46 34.40
2 776699.89  71074.60 14 329845.53 0.62 39.07
3 871134.25  89693.95 8 370471.43 0.23 51.66
4 1046187.49  94437.00 16 463108.57 0.59 95.93
5 1653146.41 107002.93 18 817523.73 0.35 131.20
6 23533442 11541591 23 1526123.70 0.49 280.50
7 2450251.68 123910.36 16 2008648.76 0.55 349.16
8 3434001.90 136349.08 31 2559860.14 0.75 494.70
9 4334688.39  148225.98 28 3694417.30 0.64 723.16
10 4817592.14 151730.43 19 2215230.18 0.59 980.40
11 5020566.34  165792.57 12 2437807.90 0.76 1328.75
12 8500502.39  175673.57 25 3887334.58 0.44 1834.56
13 8759033.18 187113.32 12 3757576.19 0.72 2337.30
14 10251098.76  192138.59 12 4593286.90 0.66 2983.04
15 12554017.27 207281.68 17 5138916.08 051 3957.90

Tables 13 and 14 display the mean values of OFs and comparison indices of meta-heuristic algorithms for
each sample problem using NSGA II and MOPSO algorithms. To compare the results obtained, a T-test was
performed at a 95% confidence level to determine the significant difference between the mean values of each
index. If the P-test statistic value obtained for each index is less than 0.05, the null hypothesis is rejected,
indicating a significant difference between the mean values of that index. Conversely, if the P-test statistic
value is greater than 0.95, hypothesis 1 is rejected, indicating no significant difference in the mean values of
that index.

Examining the T-Test on the averages of the OF,

Table 15 displays the T-test output results for the averages. Additionally, Figure 8 presents a box plot for
accepting or rejecting the null hypothesis in T-test.

Table 15. T-test results on the averages.

Algorithm Samples Average S.d. Confidence interval (95%)  T-test  P-test
NSGA 1T 75 5626072 3852039 %
MOPSO 75 4497208 3821250 (4040%53686) 2.94 0.026

Based on Table 15 and the P test statistic value, we can conclude that there is a significant difference
between the average values of the OF,; obtained by using NSGA II and MOPSO algorithms. Based on the
minimization mode of the OF, it can be inferred that the MOPSO algorithm has performed better than the

NSGA II algorithm in this index.
Based on the box diagram shown in Figure 8, it can be concluded that the averages of the OF, obtained
from the NSGA II and MOPSO algorithms differ significantly because the zero assumption is not included in

the obtained interval.

Examining the T-test test (OF>)

Table 16 displays the T-test results for the averages of the OF,. Figure 9 depicts the box plot for accepting
or rejecting the null hypothesis in the T-test.
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Table 16. T-test output results on the averages.

Algorithm Samples Average S.d. Confidence Interval (95%) T-test P-test
NSGAII 75 134440 45240 %
MOPSO 75 135004 45418 (3156¥1848) 0.56  0.584

Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)

T T T T
-10000 -5000 0 5000 10000
Differences

Figure 8. Box plot to confirm or reject the null hypothesis.

According to the P test statistic in Table 16, there is no significant difference between the averages.
Therefore, multi-attribute decision-making methods can be applied to compare the most efficient algorithm.

Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)

X
e
Ho
T T T T T T T
3 2 1 0 1 2 3
Differences

Figure 9. Box plot to confirm or reject the null hypothesis of the OF.

The results in Figure 9 reinforce those in Table 16. Based on the null hypothesis falling within the 95%
confidence interval, we can argue that there is no significant difference between the averages of the OF,
obtained by MOPSO and NSGA II algorithms.
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Examining the T-test test on the average number of effective answers

Table 17 displays the results of the T-test on meta-heuristic algorithms' comparison indexes for the average
number of effective answers at a 95% confidence level.

Table 17. T-test output results on the average number of efficient solutions.

Algorithm Samples Average S.d. Confidence Interval (95%) T-test P-test
NSGA II 75 20.27 5.04 «
MOPSO 75 1727 6.91 (-1.48%7.48) 1.43  0.173

Based on the P-test statistic value being greater than the critical value of 0.05, we can conclude that the
null hypothesis of the equality of the difference between the averages of the number of effective answers is
accepted. So, there is no significant difference between the averages of efficient solutions obtained from
solving with meta-heuristic algorithms.

Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)

¢

-10 -5 0 5 10 15 20
Differences

Figure 10. Box plot to confirm or reject the null hypothesis for the average number of effective solutions.

Figure 10 shows a box plot to confirm or reject the null hypothesis for the average number of effective
answers, and according to the observations, we can argue that the null hypothesis can be accepted and the one
hypothesis is rejected due to being in the confidence interval.

Examining the T-test test on the averages of the most widespread index

Table 18 displays the statistical comparisons of the T-test conducted on the averages of the most commonly
used index. Additionally, Figure 11 compares the averages of the most commonly used index in all the sample
problems by NSGA II and MOPSO algorithms.

Table 18. Output results of the T-test test on the averages of the most spread index.

Algorithm Samples Average S.d. Confidence Interval (95%) T-test P-test
NSGA Il 75 2478417 1496766 %
MOPSO 75 2260667 1661211 (884997523960) 153 0.149

According to the findings in Table 18, the most commonly used index averages obtained by NSGA II and
MOPSO algorithms do not differ significantly. This test's P-test statistic value is higher than the confidence
level considered.
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Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)
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Figure 11. Box plot for the null hypothesis (means of the maximum expansion index).

in the confidence interval.

The graph of Figure 11 shows that for the most widespread index, the assumption values of zero are placed

Examining the T-test test on the averages of the distance index

Table 19 displays the statistical comparisons of spacing index averages via T-Test. Additionally, Figure
12 compares the spacing index averages in all sample problems with the NSGA II and MOPSO algorithms.

Table 19. Output results of T-Test on average spacing index.
Algorithm Samples Average S.d.  Confidence Interval (95%) T-test P-test
NSGA Il 75 0.623 0.152 "
MOPSO 75 0.557 0.147 (-0.0405*0.1725) 1.33  0.205
Table 19 results and the P-test statistic (value 0.205) show no significant difference between the distance
index averages obtained by NSGA II and MOPSO algorithms.

Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)

0.3 0.2

0.1 0.0 0.1

T
0.2
Differences

0.3 0.4 0.5

Figure 12. Box plot for the null hypothesis (the averages of distance index).



J. M. Ghasemi et al.: A fuzzy chance-constrained programming model... 115

Figure 12 complements Table 19 by showing rejection of Hypothesis 1 and no significant differences in
spacing index averages.

Examining the T-test test on the computing time averages

Table 20 presents the T-test results on average computing time. Also, Figure 13 shows a box diagram for
the null hypothesis.

Table 20. The T-test results on average computing time

Algorithm  Samples Average S.d  Confidence Interval (95%) T-test P-test
NSGA I 75 844 730 .
MOPSO 75 1041 1220 (-483%*88) 1.48 0.160

According to the value of the P-test statistic, we can conclude that there is no significant difference between
the computing time averages with MOPSO and NSGA II algorithms.

Boxplot of Differences
(with Ho and 95% t-confidence interval for the mean)

T T T
-1500 -1000 -500 0
Differences

Figure 13. Box plot for the null hypothesis for computing time averages.

Figure 13 displays the null hypothesis, indicating no significant difference between the average computing
time of MOPSO and NSGA II algorithms. Additionally, figure 14 compares the averages of the OFs and
comparison indices in the numerical examples of large size.

The results of Figure 14 show that with the increase in the size of the problem, the first and OF, values
have increased, and the time to solve the problem has increased exponentially.

Based on the data presented in Table 21, it is clear that there is only a significant difference between the
averages of the OF; obtained from solving sample problems with NSGA II and MOPSO algorithms. Other
comparison indicators do not show a significant difference.

In the previous section, we made meaningful comparisons between the averages of the computational index
obtained from solving sample problems with NSGA II and MOPSO algorithms. We aimed to determine any
significant differences between them. The results showed a significant difference only between the averages
of the OF;.

This section aims to select the most efficient algorithm using the TOPSIS multi-criteria decision-making
method. To achieve this, we present Table 22, which shows the averages obtained from 75 sample problems.
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Figure 14. Comparison of averages and comparison indices of effective solutions in large numerical
examples.

Table 21. The significant difference between the average comparison indicators.

Indicator Significant difference
The OF, average Yes
The OF, average no
The number of effective answers no
The most widespread index no
Distance index no
Computational time no

Table 22. Average indices of meta-heuristic algorithms.

Algorithm OF, OF, Effegtive The grea‘test Distance Computational
solutions expansion index index time
NSGAII 4526072 45240 20.27 2478417 0.623 844
MOPSO 4497208 45418 17.27 2260667 0.557 1041
Weight 0.4 0.4 0.05 0.05 0.05 0.05

After de-scaling Table 22. results, the information was entered into the MCDM engine software. The
results showed the NSGA I algorithm efficiency with a weight of 0.6945 compared to the MOPSO algorithm
(weight = 0.3055). Therefore, considering all the indicators and results, it is recommended to use the NSGA
IT algorithm.

5 Conclusion and Future Suggestions

5.1. Key Findings

Numerous endeavors have been dedicated to investigating supply chain network design challenges. This
study delves into a multi-round supply chain network design problem, encompassing various real-world
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intricacies. It scrutinizes the executive decisions tied to energy production within the power plant, which are
integral for supply chain management. These decisions include facility placement, procurement of raw
materials, and investments in diversifying activities within the power plant's supply chain structure.
Additionally, the study addresses the uncertainty associated with demand and cost using fuzzy chance-
constrained programming.

The study also incorporates a service level indicator into the performance measurement and goal function.
While various investigations have explored power plant supply chain design, the complexities arising from
demand uncertainty, along with other inherent risks in the power plant supply chain, present significant
challenges. These factors, such as minimizing transportation, construction, and production costs while
maximizing supply chain responsiveness, compound the complexity and heighten the supply chain's
vulnerability. This necessitates thorough consideration in the decision-making process.

5.2. Metaheuristic Algorithm Comparison

To assess the mathematical model's efficacy on a larger scale, two metaheuristic algorithms—MOPSO and
NSGAIl—were employed to analyze the model's results. This approach aids in evaluating and validating the
model's performance in more extensive scenarios. After analyzing the results of the two algorithms, it was
concluded that the MOPSO algorithm has superior computing time compared to the NSGAII algorithm.
Additionally, MOPSO exhibited better performance in the first and second objective functions.

However, regarding other analytical parameters such as NPF, MSI, and SM, the NSGAII algorithm
outperformed MOPSO. Using the TOPSIS method, it was determined that NSGAII, with a weight of 0.6945,
was more favorable than MOPSO. These findings provide valuable insights into the trade-offs between
computational efficiency and solution quality across different objective functions and performance metrics.

5.3. Future Research Directions

In addition to exploring new combined metaheuristic algorithms, such as the jumping frog and red deer
algorithms, several other potential areas for further research are identified:
1. Stochastic Programming for Uncertainty Management:

Future studies could incorporate stochastic programming to handle other forms of uncertainty, such as
fluctuating fuel prices or unforeseen disruptions in supply chains. This could lead to a more dynamic and
adaptive model that accounts for sudden market shifts and improves decision-making under uncertainty.

2. Multi-Product Supply Chains:

The current model could be extended to address multi-product supply chains, where power plants rely
on various raw materials rather than a single product. While this would increase the complexity of the model,
it would make it more applicable to real-world scenarios where multiple energy sources are involved.

3. Real-Time Decision-Making:

Researchers could evaluate the performance of the model in real-time decision-making environments,
where rapid adjustments to supply chain disruptions (e.g., natural disasters or geopolitical instability) are
required. Integrating real-time data analytics and machine learning techniques could improve the model’s
responsiveness and accuracy under dynamic conditions.

4. Environmental and Sustainability Impacts:

Future studies could focus on the environmental and sustainability impacts of supply chain decisions,
such as minimizing the carbon footprint or optimizing waste management in recycling centers. Incorporating
life cycle assessment (LCA) metrics into the model would provide a more holistic view of the environmental
benefits and costs of supply chain operations.
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