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 This study introduces a multi-cycle supply chain design model, 
encompassing crucial executive decisions confronting supply 
chain management firms. These decisions encompass facility 
location, the flow of raw material procurement, and investments in 
diversifying activities within the power plant's supply chain 
design. A fuzzy chance-constrained programming approach is 
employed to deal with the uncertainties associated demand and 
cost, and a service level indicator is incorporated into the 
performance metric. The model's validation is conducted on a 
larger scale, employing two metaheuristic algorithms, MOPSO 
and NSGAII. The results revealed that the MOPSO algorithm 
exhibited faster computational efficiency than NSGAII and 
demonstrated superior performance in the first and second 
objective functions. However, analytical parameters such as NPF, 
MSI, and SM favored the NSGAII algorithm over MOPSO. This 
study presents a comprehensive multi-cycle supply chain design 
model addressing key management decisions, dealing with 
demand and cost uncertainty, and evaluating performance using a 
service level indicator. The study's findings underscore the 
efficiency of the MOPSO algorithm in computational speed but 
highlight NSGAII's advantages in terms of certain analytical 
parameters. These insights contribute to enhancing supply chain 
management strategies in diverse scenarios. 
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1 Introduction  
 

Iran, a global energy powerhouse, boasts an extensive reservoir of energy resources, positioning it as one 
of the most influential players in the energy landscape [1]. The nation's impressive portfolio includes over 85 
discovered oil fields, solidifying its global prominence [2]. Moreover, Iran stands as the world's second-largest 
holder of natural gas reserves, with an estimated 2.616 trillion cubic meters still untapped. Beyond these 
abundant fossil fuels, Iran possesses substantial coal reserves [3]. 

Recognizing the pivotal role of energy in the production processes of various commodities and the 
concurrent challenges of its scarcity, the imperative of enhancing energy efficiency has gained prominence 
among economic stakeholders [4], [5]. Iran faces the predicament of disproportionately high per capita energy 
consumption, attributed to the reluctance to adopt modern technologies across industries encompassing 
manufacturing, construction, agriculture, and transportation [6]. 
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This elevated energy consumption not only exacts an environmental toll but also hinders the trajectory of 
sustainable development, incurring substantial economic costs for producing nations [7]–[9]. The confluence 
of these factors underscores the urgency of adopting more efficient energy utilization practices and 
technologies in Iran, ensuring both economic vitality and environmental sustainability [10], [11]. 

In recent years, the production of green fuels has seen significant advancements, categorized into distinct 
generations [12]–[14]. Consequently, a pressing need arises for developing integrated supply chain design 
models that oversee all phases of green fuel production, from raw material procurement to manufacturing and 
distribution [15]–[18]. The supply chain encompasses a comprehensive network of facilities, tasks, and 
operations involved in creating and disseminating services or products, extending from suppliers to end 
customers [19]. It encompasses the strategic orchestration of supply and demand, material procurement, 
production, product/service scheduling, storage, inventory management, distribution, delivery, and customer 
service [20]. Supply chains are pervasive in manufacturing and service-oriented organizations, though their 
intricacy can vary substantially between industries and individual companies [21]–[23]. 

The essence of a supply chain lies in its role as an integrative process connecting suppliers, manufacturers, 
and distributors within an intricate, interdependent framework. In this collaborative ecosystem, the primary 
objectives are to harmonize with each organization's overarching policies, minimize inventory levels 
throughout the chain, and meet individual customers' unique demands at the supply chain's conclusion [24]–
[27]. 

Conversely, there exist numerous significant factors contributing to supply chain disruptions, which can 
be categorized and outlined as follows [28], [29]: adverse weather and climatic conditions, disruptions in 
telecommunications and Information Technology (IT) networks, challenges within the transportation network, 
seismic events like earthquakes and tsunamis, and inadequacies in allocating external resources to critical 
activities. Moreover, the manifestation of varying event dimensions exerts distinct impacts on organizations. 
These elements underscore the imperative for organizations to cultivate and enhance resilient and adaptable 
capabilities capable of effectively addressing a spectrum of potential contingencies and events [30]. 

Hence, applying the supply chain design model within the context of green power plants holds great 
potential for large-scale fuel production planning. Nonetheless, one of the foremost challenges in designing 
and optimizing such supply chains pertains to the problem-solving approach [31]. This challenge arises due to 
the inherent complexity of network design models, often classifying them as intricate matters. Consequently, 
only a limited subset of supply chain models related to green fuels can be solved with precision using 
conventional methods. The intricacies of real-world scenarios introduce uncertainties into the foundational 
parameters of mathematical models, a facet often overlooked in most relevant studies [32]. This research 
introduces a noteworthy innovation by applying a problem-stabilization approach to address this challenge. 

Moreover, supply chain management within natural environments constitutes a multi-objective decision-
making process guided by expert oversight [33]. Consequently, developing a multi-objective mathematical 
model proves indispensable in green fuel supply chains. Accordingly, this paper introduces a multi-objective 
model aligned with the green supply chain of photovoltaic power plants while accounting for demand and cost 
uncertainties. Lastly, the mathematical model is fortified using the robustness approach to address uncertainties 
effectively. 

In light of the innovative approach employed to tackle the mathematical model, it is evident that the supply 
chain model relating to photovoltaic power plants falls within the category of NP-Hard problems. The 
evaluation of this model is conducted through the utilization of metaheuristic algorithms [34], [35], providing 
valuable insights into the analysis of the photovoltaic power plant's supply chain. 

Assessing the current research landscape on supply chain networks reveals a predominant focus on material 
flow and financial analysis [22], [36], [37]. However, a significant research gap emerges in the optimization 
of both material and financial flow within the power plant supply chain. The complexities of power plant 
supply chains, particularly with regard to demand uncertainty and cost variability, remain underexplored. To 
address this gap, a comprehensive approach is required that incorporates a multi-objective mathematical model 
capable of managing these inherent uncertainties [38]. Additionally, the stabilization of such models is crucial 
for developing robust solutions that can adapt to real-world supply chain complexities. This study introduces 
a novel solution by combining Fuzzy Chance-Constrained Programming (FCCP) with multi-objective 
metaheuristic algorithms (MOPSO and NSGAII) for optimizing supply chain networks specific to power 
plants. Unlike previous works that largely rely on deterministic models or simplified uncertainty handling, our 
model comprehensively addresses both demand and cost uncertainties through fuzzy logic. Furthermore, this 



J. M. Ghasemi et al.: A fuzzy chance-constrained programming model… 93 
________________________________________________________________________________________________________________________ 

research stands out by integrating environmental sustainability measures, including reverse logistics and green 
supply chain practices, which are often overlooked in traditional supply chain models. By using two distinct 
metaheuristic algorithms, this study provides a comparative analysis of computational efficiency and solution 
quality in large-scale, uncertain supply chain environments. This unique combination of uncertainty 
management, sustainability considerations, and algorithmic comparison offers a substantial contribution to the 
advancement of supply chain optimization models in the power plant sector. 

This paper is structured as follows. Section 2 presents a detailed literature review, focusing on key areas 
such as environmental sustainability, economic efficiency, and uncertainty handling in supply chain models. 
Section 3 defines the problem and introduces the proposed fuzzy chance-constrained programming model to 
address supply chain uncertainties. Section 4 outlines the research findings, including the performance 
comparison of the MOPSO and NSGAII metaheuristic algorithms. Finally, Section 5 offers conclusions drawn 
from the study and provides suggestions for future research directions. 

 
2 Literature Review 
 

In recent years, the importance of environmental sustainability within supply chain management has grown 
significantly. Studies such as [39], [40] highlight the role of green supply chains in reducing carbon footprints 
and promoting sustainable energy practices. For instance, Genovese et al. [41] explores the integration of Life 
Cycle Assessment (LCA) metrics into supply chains, which allows for a more holistic view of environmental 
impacts from raw material procurement to product end-of-life recycling. Additionally, the concept of a closed-
loop supply chain, as discussed in [42], emphasizes the importance of recycling and reusing materials to 
minimize waste and environmental harm. These studies align with the current research, which incorporates 
green logistics in power plant supply chains and considers the environmental benefits of implementing reverse 
flows for recycling. 

Economic efficiency in supply chain management remains a central concern, particularly in energy-
intensive industries like power plants. Various studies, including [43], [44], examine strategies for minimizing 
costs across transportation, production, and facility placement. The integration of metaheuristic algorithms, 
such as the ones used in this study, is commonly explored to address cost minimization in complex supply 
chain models [45]–[47]. Additionally, [48], [49] discusses the balance between economic efficiency and 
operational flexibility, highlighting the importance of reducing fixed and variable costs while maintaining 
service levels. These findings support the current study’s focus on minimizing costs through optimization 
techniques in both forward and reverse logistics. 

Effectively managing uncertainty is essential in supply chain optimization, particularly when facing 
unpredictable factors such as fluctuating demand, variable costs, and supply disruptions. Several studies, 
including [50], [51], highlight the importance of fuzzy programming and stochastic programming as tools to 
address these uncertainties. Among these, Fuzzy Chance-Constrained Programming (FCCP), proposed by Liu 
and Iwamura [52], stands out as a powerful extension of traditional Chance-Constrained Programming (CCP). 
By integrating fuzzy logic, FCCP allows for a more flexible and adaptive treatment of uncertain parameters 
like demand, costs, and supply availability. Its theoretical foundation stems from the combination of 
probabilistic constraints and fuzzy set theory, introduced by Zadeh [53], which models uncertainty not just 
through probabilities but by degrees of membership in fuzzy sets. In the literature of Supply Chain 
Management, many scholars have adopted FCCP to tackle uncertainties and imprecise data that are common 
in supply chains. FCCP is especially valuable in handling unpredictable factors such as fluctuating demand, 
uncertain lead times, and variable costs. By integrating fuzzy logic into traditional optimization frameworks, 
FCCP allows for more flexible decision-making under uncertainty, where constraints can be satisfied to 
varying degrees rather than rigidly. 

The application of FCCP in the current study demonstrates its effectiveness in handling uncertainty, 
particularly with regard to demand and cost variables, leading to more resilient and adaptable supply chain 
models. In parallel, studies such as [54]–[56] explore stochastic programming as a means of managing external 
uncertainties, such as fuel price volatility, offering a complementary strategy for mitigating risks in supply 
chain operations. 

Marhamati [57] explore the food cold chain, which preserves perishable food products through 
refrigeration from farm to consumer, maintaining appropriate temperatures to reduce microbial hazards. Their 
empirical study of the Australian perishable food industry identifies key impediments and performance 
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indicators of FCC Performance (FCCP), examining how these barriers impact FCCP through factor analysis 
and structural equation modeling, using data from 292 senior managers in various supply chain roles. Wang et 
al. [58] develop a Flexible-possibilist Chance Constraints Programming (FCCP) Model to plan low-carbon 
Energy-Transportation Systems (METS) at a metropolitan scale, addressing multiple uncertainties. Applied to 
Beijing, the FCCP model reveals increasing reliance on imported power and renewable energy, while the mass 
adoption of Electric Vehicles (EVs) significantly reduces carbon emissions. The study highlights the need for 
substantial investment in battery supply facilities and emphasizes the FCCP's ability to manage complexities 
in power plant planning under uncertain conditions. Fateh et al. [50] highlighted the significant uncertainties 
introduced by Renewable Energy Sources (RESs) in Virtual Power Plants (VPPs) and the need for advanced 
modeling techniques. They applied FCCP for addressing such uncertainties by providing a flexible framework 
that accommodates the variability in RESs. Hanak et al. [59] examined the potential performance of a coal-
fired power plant, considering the continued importance of coal as a primary energy source in the foreseeable 
future while emphasizing the need for an environmentally friendly system. The research examines the use of 
a stochastic method through probabilistic models to determine the possibility of power plant equipment failure 
by employing Monte Carlo simulation. This method is an alternative way to assess the power plant's 
performance and forecast significant performance indicators, such as coal consumption and inlet air rates. The 
technique also helps to estimate reliability indices (such as the thermal efficiency of the power plant) based on 
the power plant process model's input uncertainty. Sahin et al. [60] assessed the performance of a combined 
cycle power plant by conducting an exergy-economic analysis, applying the principles of the first and second 
laws of thermodynamics. They introduced a comprehensive indicator called the Total Performance Index (OPI) 
to gauge and analyze the power plant's ideal operation and design. They included some performance indicators: 
Total Investment cost (TI), Energy Efficiency (ENE), Cost of Electricity (COE), and Exergy Efficiency (EXE). 
Shen Ho and Lam [61] introduced an innovative optimization method utilizing principal component analysis 
to address the multi-layer biomass supply chain problem. This approach encompassed technology selection 
and transportation design, considering economic factors, environmental aspects (including various 
environmental impacts), and social considerations (such as health, safety, and job creation). Ashtineh and 
Pishvaee [62] stated that transportation activities that produce greenhouse gases can harm the environment and 
human health. Therefore, sustainability principles dictate that the burden of environmental problems caused 
by logistics activities, such as Vehicle Routing Problems (VRP), must be considered. The Pollution Routing 
Problem (PRP) is an extension of VRP that involves optimizing the routing of several vehicles to serve 
customers. It also determines their speed on each route segment to minimize fuel consumption, emissions, and 
driver costs. Saffarian et al. [63] introduced a financial integration and inventory routing model for a closed-
loop two-level supply chain. They devised a mathematical model to address smaller-scale problems. 
Recognizing the complexity of larger scenarios, they employed two meta-heuristic methods—genetic 
algorithms and particle aggregation optimization—to tackle medium and large-scale problems efficiently. 

Wu et al. [64] created a type-2 fuzzy chance-constrained model to optimize water resource management 
under uncertainty. Applied to Taiyuan, China, the model highlights a shift to diverse industries and increased 
reliance on external water sources. It also suggests that using reclaimed water can enhance water supply 
security, supporting sustainable development goals. Huang et al. [65] investigate a decentralized supply chain 
network with uncertain costs, focusing on optimizing enterprise decisions under this uncertainty. They employ 
a chance-constrained approach and formulate the problem as a second-order cone-constrained variational 
inequality model. Their analysis reveals that retailers' and manufacturers' risk attitudes significantly influence 
their decisions and profits, with high risk tolerance leading to greater impacts on decision-making. 
Additionally, adopting a chance-constrained method is beneficial when supply chain members can estimate 
competitors' strategies. 

 
3 Definition of the Problem 
 

This research uses a closed-loop supply chain network of producers (power plant raw materials including 
fuel oil, etc.), distribution centers and customers (power plants), recycling centers, and recycled product 
customers to minimize and maximize green logistics costs. It is designed to respond to the demands of two 
forward and reverse flows of the supply chain of green energy production. 

Manufacturers dispatch their products to both distributors and customers, including power plants. 
Customers also have the option to obtain products from distributors. In this network spanning several periods, 



J. M. Ghasemi et al.: A fuzzy chance-constrained programming model… 95 
________________________________________________________________________________________________________________________ 

a portion of the energy production of raw materials generates waste at these three levels. These waste materials 
are then routed to a fourth level, the recycling centers, where they undergo reprocessing. After reprocessing, 
they are further directed to a fifth level, comprising recycling customers. Furthermore, it's worth noting that 
the first level of this chain can also be viewed as a subset of the fifth-level customers, highlighting the closed-
loop nature of this network. 

A single-product, dual-objective, and multi-period programming model has been developed to design the 
power plant logistics network. On the one hand, the developed model aims to minimize network costs, 
including the fixed cost of establishing distribution centers, transmission, inventory maintenance, and 
operational costs. On the other hand, it maximizes customer demand response in both the forward and reverse 
sectors.  

As we mentioned above, in this study, the two primary objectives—minimizing costs (OF1) and 
maximizing responsiveness (OF2)—are central to the design of an efficient closed-loop supply chain network 
for power plants. However, these objectives often present competing priorities: while cost minimization 
focuses on reducing expenditures across various aspects of the supply chain (such as transportation, processing, 
inventory, and operational costs), maximizing responsiveness emphasizes the ability to quickly meet customer 
demands and adapt to uncertainties in demand and supply. The trade-off between these objectives stems from 
the fact that increasing responsiveness often incurs higher costs. For example, improving responsiveness may 
require more frequent shipments, additional inventory holding, or investing in more expensive, faster 
transportation modes—each of which raises operational expenses. On the other hand, minimizing costs 
typically involves reducing resource allocation, transportation frequency, or inventory levels, which can slow 
response times and reduce flexibility in the supply chain. 

To address this inherent trade-off, the model uses a multi-objective optimization approach, where the 
interaction between the two objectives is explicitly modeled. Specifically: 

1. The cost minimization objective (OF1) accounts for the fixed costs, transportation, inventory, and 
operational expenses involved in the supply chain. Reducing these costs is essential to maintaining 
profitability but must be balanced against maintaining a sufficient service level. 

2. The responsiveness maximization objective (OF2), on the other hand, aims to ensure timely fulfillment 
of customer demand while incorporating the capability to process recycled products efficiently. This 
is critical for green supply chains that must handle both forward and reverse logistics flows. 

To achieve a balanced solution, the epsilon-constraint method is employed, where one objective (typically 
cost minimization) is incorporated as a constraint while the other objective (maximizing responsiveness) is 
optimized. By adjusting the bounds on the cost constraint, the model can generate solutions that represent 
different levels of trade-offs between cost efficiency and responsiveness. Additionally, the MOPSO and 
NSGA-II algorithms, which are used to solve the model, allow for the exploration of the Pareto front, a set of 
optimal solutions where no objective can be improved without worsening the other. This enables decision-
makers to evaluate different scenarios along the Pareto front and select a solution that best aligns with their 
priorities—whether it is minimizing costs, maximizing responsiveness, or finding a balanced compromise 
between the two. By expanding the discussion on these trade-offs, we highlight that the optimization process 
does not merely seek to improve one objective at the expense of the other. Instead, the model carefully balances 
both objectives, offering flexible decision-making options depending on the strategic importance of cost 
savings versus service level performance in a particular context. Therefore, this research has developed a new 
mixed integer linear programming mathematical model for the power plant logistics network, which we will 
be described in the next subsection below. 

 
3.1 Problem modelling 
 

In this section, the assumptions of the problem are presented first. Then, in the following, we will describe 
the novel two-objective model after introducing the parameters, indices, and decision variables. 

For better efficiency of the problem and to be close to the real world, the following assumptions are 
considered: 

1. The five-level energy distribution network includes (producers of materials needed by power plants, 
distributors, customers, recycling centers, and customers of recycled products). 

2. Producers' production is not precisely known, and it is considered a decision variable smaller than the 
maximum production capacity of power plants. 
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3. The j index for the distributor includes both existing points and potential points. 
4. Product transportation cost between network levels is obtained based on the distance between points. 

It is assumed that a type of transportation equipment with a specific capacity and cost is available. 
5. Only distributors can store the raw materials of power plants. 
6. To reduce the model complexity, the model has been designed as a single product as raw materials for 

power plant energy production. 
7. It is not possible to transfer raw materials between distributors. 
8. It is not possible to move between producers (power plants) or between customers. 

 
3.2 Model symbols 
 

The following symbols are used to develop the proposed mathematical model: 
 

Indexes: 
 

Production sites for raw materials i=1,2,…,I 
Candidate and fixed points of distribution locations j=1,2,…,J 
Customer locations (power plants) k=1,2,…,K 
Candidate and fixed points of recycling places l=1,2,…,L 
Periods t=1,..,T 
Recycling customer locations o=1,2,…,O 

 
Parameters: 
 

The jth distribution center's establishing fixed cost. 𝑓ఫ෩  

The lth recycling center's establishing fixed cost. 𝑓௟෩  

Transportation cost from manufacturer i to distributor j. 𝐶𝑥పఫ෪  
Transportation cost from manufacturer i to customer k. 𝐶𝑠ప௞෫ 
Transportation cost from distributor j to customer k. 𝐶𝑢ఫ௞෫  
Transportation cost from customer k to recycling center l. 𝐶𝑒௞௟෫ 
Transportation cost from distributor j to recycling center l. 𝐶𝑞ఫ௟෫ 
Transportation cost from producer i to recycling center l. 𝐶𝑣ప௟෪  
Transportation cost from recycling center l to compost market o. 𝐶𝑓௟௢෪  
Transportation cost from recycling center l to producer i. 𝐶𝑔௟ప෪  
Product holding cost by distributors in time t. 𝐶ℎ௧෪  
Product processing and packaging cost in time t. 𝐶𝑝௧෪  
Recycling centers' production cost in time t. 𝐶𝑟௧෪  
Product production cost by manufacturers. 𝐶𝑝ᇱ෪  
The kth customer demand in time t. 𝑑௞௧෪  
The maximum capacity of producer i in time t. 𝜆𝑐௜௧ 
The jth distributor's storage capacity.  𝜆ℎ௝ 
The lth recycling center's Production and storage capacity.  𝜆𝑟௟ 
The percentage of waste materials produced by the manufacturer in time t according to the 
parameters of greenness of the raw materials. 

𝛼௧ 

The percentage of raw materials waste stored by the customer in the time t according to the 
parameters of greenness of the raw materials. 

𝜃௧ 

The percentage of raw materials waste stored by the distributor in the time t according to the 
parameters of greenness of the raw materials. 

𝛽௧ 

Demand for reprocessed/recycled products by customers o in time t. 𝑑ሚ௢௧
ᇱ  

Weighting factor (importance) to respond in forward flows. 𝜌 
Weighting coefficient (importance) to respond in backward flows. 1 − 𝜌 
A percentage of waste products that can be sold to customers. 𝜑 
A vast positive number. 𝑀 
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Decision variables: 
 

 
Also, to better understand the position of decision variables, the network schematic structure, and the used 

variables are presented in Figure 1. 

 
Figure 1. Schematic of the proposed network along with the decision variables. 

 
3.3 Proposed model 
 

According to the problem definition and considering the assumptions, the mathematical model is 
developed to minimize supply chain costs, including transportation, distribution centers' building potential 
locations, inventory maintenance and production and processing, and maximizing demand response. 

 
Objective functions 
 

This model consists of two objective functions (OFs): minimizing cost (OF1) and maximizing 
responsiveness (OF2). 
 𝑚𝑖𝑛 𝑍 = 𝑧ଵ + 𝑧ଶ + 𝑧ଷ + 𝑧ସ (1) 

A quantity of raw materials sent from producer i to distributor j in time t. 𝑋௜௝௧ 
The amount of raw materials produced by producer i in time t. 𝜆௜௧ 
A quantity of raw materials sent from producer i to customer k in time t. 𝑆௜௞௧ 
A quantity of raw materials sent from distributor j to customer k in time t. 𝑈௝௞௧ 
A quantity of waste raw materials sent from customer k to recycling center l in time t. 𝐸௞௟௧ 
A quantity of waste raw materials sent from distributor j to recycling center l in time t. 𝑄௝௟௧ 
A quantity of waste raw materials sent from producer i to recycling center l in time t. 𝑉௜௟௧ 
A quantity of reproducible raw materials sent from recycling center l to producer i in time 
t. 

𝐺௟௜௧ 

A quantity of processed raw materials held in the distributor j's warehouse in time t. 𝐼ℎ௝௧ 

One, if the distribution center is established in candidate location j, zero otherwise. 𝑊௝ ቄ
1
0

 

It is one if the recycling center is established at candidate location l, zero otherwise. 𝑌௟ ቄ
1
0

 

A quantity of recycled raw materials sent from recycling center l to market o in time t. 𝐹௟௢௧ 

I J K 

L 

𝑋௜௝ 

𝑆௜௞ 

𝑈௝௞ 

𝐸௞௟ 
𝑄௝௟ 

𝑉௜௟ 

O 
𝐹௟௢ 

𝐺௟௜ 
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Equation (1) is the cost minimization, which is a total of 4 types of costs presented in relations (2) to (5). 

Fixed costs of establishing distribution and recycling centers are included in relation (2). It is important to note 
that existing and potential points can serve as distribution and recycling centers. To achieve this, we consider 
the construction costs of existing points in zero parameters instead of adding an index. In relation (3) 
transportation costs, including forward and backward, and in relation (4) the costs of storing processed products 
are included. In relation (5), operational costs, including processing and packaging and open processing costs, 
are given. 
 

𝑚𝑎𝑥 𝑍ᇱ = 𝜌 ×
൫∑ ∑ ∑ 𝑆௜௞௧

ூ
௜ୀଵ

௄
௞ୀଵ

௧ᇲ

௧ୀଵ + ∑ ∑ ∑ 𝑈௝௞௧
௃
௝ୀଵ

௄
௞ୀଵ

்
௧ୀଵ ൯

൫∑ ∑ 𝑑௞௧
෪௄

௞ୀଵ
்
௧ୀଵ ൯

+ 

+(1 − 𝜌) × ൭෍ ෍ ෍ 𝐹௟௢௧

ை

௢ୀଵ

௅

௟ୀଵ

்

௧ୀଵ

൱ / ൭෍ ෍ 𝑑௢௧
ᇱ෪

ை

௢ୀଵ

்

௧ୀଵ

൱ 

(6) 

 
Equation (6) describes the second (maximization) objective function OF2. The response is segmented into 

two groups: the main product (power plants) and the reprocessed product. 
Constraints: 
 

In this mathematical model, there are 18 restrictions as follows. 
 

 
𝜆௜௧ × (1 − 𝛼௧) = ෍ 𝑋௜௝௧

௃

௝ୀଵ

+ ෍ 𝑆௜௞௧

௄

௞ୀଵ

− ෍ 𝐺௟௜௧

௅

௟ୀଵ

              ∀ 𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (7) 

   
Equation (7) shows the amount of production by producers with the deduction of waste equal to the amount 

of transfer from producers to distributors and the target market (power plants). 
 

 
෍ 𝑋௜௝௧

ூ

௜ୀଵ

≤ 𝑀 × 𝑊௝       ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 

 

(8) 
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Also, relation (8) is a constraint related to relation (7), emphasizing that sending loads to potential 
distributors is done if that place is built. 

 
 𝜆௜௧ ≤ 𝜆𝑐௜௧ (9) 

 
Equation (9) indicates that smaller producers' production equals their maximum capacity. 
 

 
𝐼ℎ௝(௧ିଵ) + ෍ 𝑋௜௝௧

ூ

௜ୀଵ

= 𝐼ℎ௝௧ + ෍ 𝑈௝௞௧

௄

௞ୀଵ

+ ෍ 𝑄௝௟௧

௅

௟ୀଵ

               ∀ 𝑗 ∈ 𝐽, ∀ 𝑡 ∈ 𝑇 (10) 

   
 

According to Equation (10), the inventory level of the distributors' warehouse in any given period is 
determined by subtracting the amount of waste from the previous period from the inventory level of the last 
period and then adding the new products that have entered the warehouse while also subtracting the number 
of foreign products that have been moved from the warehouse to the processing and packaging line. 

 
 𝐼ℎ௝௧ ≤ 𝜆ℎ௝ × 𝑊௝                ∀𝑗 ∈ 𝐽,  ∀𝑡 ∈ 𝑇 (11) 
   

Equation (11) indicates that the smaller distributor's maximum inventory equals the warehouse capacity. 
 

 
෍ 𝑈௝௞௧

௃

௝ୀଵ

+ ෍ 𝑆௜௞௧

ூ

௜ୀଵ

≤ 𝑑௞௧
෪             ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇 (12) 

   
Equation (12) means that in each more significant period, the market demand equals the products imported 

from producers and distributors. 
 

 
෍ 𝑉௜௟௧

௅

௟ୀଵ

= 𝛼௧ × 𝜆௜௧          ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (13) 

   
 

෍ 𝑉௜௟௧

ூ

௜ୀଵ

≤ 𝑀 × 𝑌௟       ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (14) 

   
 

෍ 𝑄௝௟௧

௅

௟ୀଵ

= 𝛽௧ × 𝐼ℎ௝(௧ିଵ)           ∀𝑗 ∈ 𝐽, ∀ 𝑡 ∈ 𝑇 (15) 

   
 

෍ 𝑄௝௟௧

௃

௝ୀଵ

≤ 𝑀 × 𝑌௟       ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (16) 

   
 

෍ 𝐸௞௟௧

௅

௟ୀଵ

= 𝜃௧ × (෍ 𝑋௜௝௧

௃

௝ୀଵ

+ ෍ 𝑆௜௞௧

௄

௞ୀଵ

)         ∀𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇 (17) 

   
 

෍ 𝐸௞௟௧

௄

௞ୀଵ

≤ 𝑀 × 𝑌௟          ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (18) 
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Equations (13) to (18) specify that in each section, the amount of waste for the reverse flow is shown in 
the case of the construction of recycling centers. 

 
 

ቌ෍ 𝑉௜௟௧

ூ

௜ୀଵ

+ ෍ 𝑄௜௟௧

௃

௝ୀଵ

+ ෍ 𝐸௜௟௧

௄

௞ୀଵ

ቍ × 𝜑 = ෍ 𝐹௟௢௧

ை

௢ୀଵ

             ∀ 𝑙 ∈ 𝐿,  ∀ 𝑡 ∈ 𝑇 (19) 

   
Equation (19) states that the combined amount of waste generated by the producer, distributor, and 

customer, when multiplied by the waste conversion rate, equals the total recycling sent to recycling markets 
and customers. 

 
 

෍ 𝐹௟௢௧

ை

௢ୀଵ

 ≤  𝜆𝑟௟ × 𝑌௟                ∀ 𝑙 ∈ 𝐿,  ∀ 𝑡 ∈ 𝑇 
(20) 

 

   
Equation (20) indicates that the total amount of recycled materials sent to the market and smaller customers 

is equivalent to the recycling centers' production capacity. 
 

 
෍ 𝐹௟௢௧ ≤ 𝑑௢௧

ᇱ෪
௅

௟ୀଵ

             ∀𝑜 ∈ 𝑂,  𝑡 ∈ 𝑇 (21) 

   
Equation (21) indicates that the total recycled materials sent to the market and smaller customers are 

equivalent to the recycled customers' demand. 
 

 
ቌ෍ 𝑉௜௟௧ିଵ

ூ

௜ୀଵ

+ ෍ 𝑄௜௟௧ିଵ

௃

௝ୀଵ

+ ෍ 𝐸௜௟௧ିଵ

௄

௞ୀଵ

ቍ × (1 − 𝜑) = ෍ 𝐺௟௜௧

ூ

௜ୀଵ

    ∀ 𝑙 ∈ 𝐿,  ∀ 𝑡 ∈ 𝑇 (22) 

   
Equation (22) indicates that a percentage of waste products that can be reproduced will be sent to the 

production center in the next period. 
 𝑌௟  , 𝑊௝ ∈ {0,1}        ∀𝑙 ∈ 𝐿 , ∀ 𝑗 ∈ 𝐽 (23) 

 
 𝑋௜௝௧  ,  𝑆௜௞௧,  𝑈௝௞௧ ,  𝑉௜௟௧,  𝑄௝௟௧, 𝐸௞௟௧ , 𝐹௟௢௧ ≥ 0     ∀𝑜 ∈ 𝑂, ∀ 𝑖 ∈ 𝐼,  ∀𝑗 ∈ 𝐽,  ∀𝑘 ∈ 𝐾,  ∀𝑡 ∈ 𝑇,  ∀𝑙 ∈ 𝐿 (24) 
   
 𝐼ℎ௝௧ ≥ 0           ∀𝑗 ∈ 𝐽,  ∀𝑡 ∈ 𝑇 (25) 

 
Relations (23) to (25) indicate the sign variables or zero and one variables and their positivity. 
 

3.4 Solution approach 
 

 In this study, uncertainty in key parameters such as cost, demand, and transportation are captured using 
trapezoidal fuzzy numbers. Trapezoidal distributions are selected because they allow for flexibility in modeling 
uncertainty by defining four critical points: 𝑎෤ = (𝑎෤ଵ, 𝑎෤ଶ, 𝑎෤ଷ, 𝑎෤ସ). These points represent the lower limit, lower 
mode, upper mode, and upper limit of the parameter, respectively, and are particularly suited to situations 
where precise parameter values are unknown but can be estimated within a bounded range (see Figure 2). 

The selection of trapezoidal fuzzy numbers is justified by both the availability of historical data and expert 
judgment. For instance, in cases where there is incomplete or imprecise data regarding demand or cost, domain 
experts provide estimates that define the likely range and spread of uncertainty. The use of fuzzy distributions 
helps incorporate this uncertainty into the model without requiring exact point estimates, making it more robust 
for real-world applications. To construct the basic fuzzy chance constraints, we employed the Fuzzy Chance-
Constrained (FCCP) approach to model the uncertain parameters. The Necessity (Nec) scale is used to 
transform fuzzy chance constraints into equivalent deterministic equations, ensuring that constraints are 
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satisfied to a specified degree of confidence. Additionally, the expected value approach is applied to manage 
uncertainty within the objective function, providing a more robust representation of uncertain parameters by 
averaging their possible values. The expected value approach smooths out variations by averaging the 
trapezoidal fuzzy numbers, reflecting realistic ranges of costs and demand, while the Nec scale transforms 
fuzzy constraints into deterministic equivalents, ensuring that constraints are satisfied to a predefined 
confidence level.  By clearly defining the fuzzy parameters and their justification, we ensure that the model can 
handle real-world uncertainties effectively, making the model more reliable for decision-making under 
uncertainty.to explain the mathematical process To explain the mathematical process of the optimization 
problem and how fuzzy parameters are incorporated, let's break down the problem. Consider the following 
optimization problem: 

 
 𝑀𝑖𝑛 𝑍 =  𝑓𝑦 +  𝑐𝑥  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑥 ≥  𝑑 
𝐵𝑥 =  𝑑  

𝑆𝑥 ≤  𝑁𝑦  
𝑌 ∈  {0,1} 

𝑥 ≥  0 

(25) 

   
Suppose the vector 𝑓 (fixed costs) is a deterministic parameter, while the vectors 𝑐 (variable costs) and 𝑑 

(demand) and the matrix 𝑁  are uncertain parameters of the problem. To construct the basic fuzzy programming 
model with chance constraints, as we mentioned earlier, we used the "expected value" approach to model the 
uncertain parameters of the objective function and the Nec scale to model the chance constraints. 

The Nec scale can be directly used to convert fuzzy chance constraints into their equivalent deterministic 
equations (Equation (27)). In this paper, we used a trapezoidal fuzzy distribution in the model because it can 
define four critical points  𝑎෤ = (𝑎෤ଵ, 𝑎෤ଶ, 𝑎෤ଷ, 𝑎෤ସ) (see Figure 2). 

 

 
Figure 2. fuzzy parameter  𝑎෤. 

 
 

 𝑀𝑖𝑛 𝐸[𝑍] =  𝐸[𝑓]𝑦 +  𝐸[𝑐̃]𝑥 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑁𝑒𝑐൛ 𝐴𝑥 ≥  𝑑ሚൟ ≥  𝛼௠    ∀ 𝑚 ∈ 𝑀 

𝑁𝑒𝑐൛ 𝐵𝑥 =  𝑑ሚൟ ≥ 𝛼௠   ∀ 𝑚 ∈ 𝑀 
𝑁𝑒𝑐൛ 𝑆𝑥 ≤  𝑁෩𝑦ൟ ≥  𝛼௠ 

∀ 𝑚 ∈ 𝑀  𝑌 ∈  {0,1} 
𝑥 ≥  0 

(27) 

   
Since the objective function and constraints have uncertain parameters and are considered with fuzzy 

distributions, and given that the constraints with uncertain parameters must be satisfied with at least an 𝛼௠ 
satisfaction level, the deterministic model can be defined as Equation (28): 

 
 

𝑀𝑖𝑛 𝐸[𝑍] =  𝑓𝑦 +  ൬
𝑐ଵ + 𝑐ଶ + 𝑐ଷ + 𝑐ସ

4
 ൰ 𝑥 

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑥 ≥  (1 − 𝛼௠)𝑑ଷ + 𝛼௠𝑑ସ 
(28) 
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𝐵𝑥 ≤  (
𝛼௠

2
 ) 𝑑ଷ + (1 −  

𝛼௠

2
 ) 𝑑ସ  

 𝐵𝑥 ≥  (
𝛼௠

2
 ) 𝑑ଶ + (1 − 

𝛼௠

2
 ) 𝑑ଵ 

 𝑆𝑥 ≤  [(1 − 𝛼௠)𝑁ଶ + 𝛼௠𝑁ଵ]𝑌  
𝑌 ∈  {0,1} 𝑥 ≥  0 

 
Given the explanations provided above, the crisp equivalent of the proposed multi-objective mixed-integer 

linear programming model can be expressed as follows: 
 

 𝑚𝑖𝑛 𝐸[ 𝑍] = 𝐸[𝑧ଵ] + 𝐸[𝑧ଶ] + 𝐸[𝑧ଷ] + 𝐸[𝑧ସ] (29) 
   
 

𝐸[𝑧ଵ] = ෍
(𝑓௝ଵ + 𝑓௝ଶ + 𝑓௝ଷ + 𝑓௝ସ)

4
× 𝑊௝

௃

௝ୀଵ

+ ෍
(𝑓௟ଵ + 𝑓௟ଶ + 𝑓௟ଷ + 𝑓௟ସ)

4

௅

௟ୀଵ

× 𝑌௟ 
(30) 

 

 
𝐸[𝑧ଶ] = ෍ ෍ ෍

(𝐶𝑥௜௝ଵ + 𝐶𝑥௜௝ଶ + 𝐶𝑥௜௝ଷ + 𝐶𝑥௜௝ସ)

4
× 𝑋௜௝௧ +

௧ᇲ

௧ୀଵ

௃

௝ୀଵ

ூ

௜ୀଵ

+ ෍ ෍ ෍
(𝐶𝑢௝௞ଵ + 𝐶𝑢௝௞ଶ + 𝐶𝑢௝௞ + 𝐶𝑢௝௞ସ)

4
× 𝑈௝௞௧ +

்

௧ୀଵ

௄

௞ୀଵ

௃

௝ୀଵ

+ ෍ ෍ ෍
(𝐶𝑠௜௞ଵ + 𝐶𝑠௜௞ଶ + 𝐶𝑠௜௞ଷ + 𝐶𝑠௜௞ )

4
× 𝑆௜௞௧ +

௧ᇲ

௧ୀଵ

௞

௞ୀଵ

ூ

௜ୀଵ

 

 

+ ෍ ෍ ෍
(𝐶𝑣௜௟ + 𝐶𝑣௜௟ଶ + 𝐶𝑣௜௟ଷ + 𝐶𝑣௜௟ )

4
× 𝑉௜௟௧ +

௧ᇲ

௧ୀଵ

௅

௟ୀଵ

ூ

௜ୀଵ

+ ෍ ෍ ෍
(𝐶𝑞௝௟ଵ + 𝐶𝑞௝௟ଶ + 𝐶𝑞௝௟ଷ + 𝐶𝑞௝௟ସ)

4
× 𝑄௝௟௧ +

்

௧ୀଵ

௅

௟ୀଵ

௃

௝ୀଵ

+ ෍ ෍ ෍
(𝐶𝑒௞௟ଵ + 𝐶𝑒௞௟ଶ + 𝐶𝑒௞௟ଷ + 𝐶𝑒௞௟ସ)

4
× 𝐸௞௟௧

்

௧ୀଵ

௅

௟ୀଵ

௄

௞ୀଵ

+ 

 

+ ෍ ෍ ෍
(𝐶𝑓௟௢ଵ + 𝐶𝑓௟௢ଶ + 𝐶𝑓௟௢ଷ + 𝐶𝑓௟௢ସ)

4
× 𝐹௟௢௧

ை

௢ୀଵ

்

௧ୀଵ

௅

௟ୀଵ

+ ෍ ෍ ෍
(𝐶𝑔௟௜ + 𝐶𝑔௟௜ଶ + 𝐶𝑔௟௜ଷ + 𝐶𝑔௟௜ସ)

4
× 𝐺௟௜௧

ூ

௜ୀଵ

்

௧ୀଵ

௅

௟ୀଵ

 

(31) 

   
 E [𝑧ଷ] = ∑ ∑ 𝐼ℎ௝௧ ∗்

௧ୀଵ
௃
௝ୀଵ

(஼௛೟భା஼௛೟మା஼௛೟యା஼௛೟ర)

ସ
 (32) 

   
 

𝐸[𝑧ସ] = ෍ ෍ ෍ 𝑋௜௝௧ ×
(𝐶𝑝௧ଵ + 𝐶𝑝௧ଶ + 𝐶𝑝௧ଷ + 𝐶𝑝௧ସ)

4
+

்

௧ୀଵ

௃

௝ୀଵ

ூ

௜ୀଵ

+ ෍ ෍ ෍ 𝐹௟௢௧ ×
(𝐶𝑟௧ଵ + 𝐶𝑟௧ଶ + 𝐶𝑟௧ଷ + 𝐶𝑟௧ସ)

4
+

ை

௢ୀଵ

்

௧ୀଵ

௅

௟ୀଵ

+ ෍ ෍ 𝜆௜௧ ×
(𝐶𝑝ᇱ

ଵ + 𝐶𝑝ᇱ
ଶ + 𝐶𝑝ᇱ

ଷ + 𝐶𝑝ᇱ
ସ)

4

௧ᇲ

௧ୀଵ

ூ

௜ୀଵ

 

(33) 
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𝑚𝑎𝑥 𝐸[𝑍ᇱ] = 𝜌 ×

൫∑ ∑ ∑ 𝑆௜௞௧
ூ
௜ୀଵ

௄
௞ୀଵ

௧ᇲ

௧ୀଵ + ∑ ∑ ∑ 𝑈௝௞௧
௃
௝ୀଵ

௄
௞ୀଵ

்
௧ୀଵ ൯

ቆ∑ ∑
൫𝑑௞௧ଵ

+ 𝑑௞௧ଶ
+ 𝑑௞௧ଷ

+ 𝑑௞௧ସ൯
4

௄
௞ୀଵ

்
௧ୀଵ ቇ

+ 

+(1 − 𝜌) × ൭෍ ෍ ෍ 𝐹௟௢௧

ை

௢ୀଵ

௅

௟ୀଵ

்

௧ୀଵ

൱ / ൭෍ ෍
(𝑑௢௧

ᇱ
ଵ

+ 𝑑௢௧
ᇱ

ଶ
+ 𝑑௢௧

ᇱ
ଷ

+ 𝑑௢௧
ᇱ

ସ
)

4

ை

௢ୀଵ

்

௧ୀଵ

൱ 

(34) 

   
 

෍ 𝑈௝௞௧

௃

௝ୀଵ

+ ෍ 𝑆௜௞௧

ூ

௜ୀଵ

≤ 𝛼ଵ 𝑑௞௧ଷ + (1 −  𝛼ଵ ) 𝑑௞௧ସ           ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇 (35) 

   
 

෍ 𝐹௟௢௧  ≤

௅

௟ୀଵ

   𝛼ଶ 𝑑௢௧ଷ
ᇱ + (1 − 𝛼ଶ) 𝑑௢௧ସ

ᇱ           ∀𝑜 ∈ 𝑂,  𝑡 ∈ 𝑇 (36) 

   
 s.t.   constraints 7-11,13-20,22-25 (37) 

 
Please note that in this paper, we use a confidence level of 90% for both chance constraints, denoted as  

𝛼ଵ = 𝛼ଶ = 0.90. 
 

4 Research Findings 
 

This article seeks to develop a five-level green closed-loop network of customers (power plants), 
producers, recycling centers, distributors, and customers of recycled products. The model has been validated 
by the epsilon constraint method and MOPSO and NSGA II algorithms. In this method, OF1 is included as a 
constraint, and the second is considered a constraint. The size of the numerical example in the validation 
section consists of three producers, four distribution centers, four recycling centers, and two customers of 
recycled products. The selected cities for each location in this issue are shown in Table 1. Also, the 
transportation costs used between cities for all matters are taken from Table 2. 

  
Table 1. Selected cities for each index. 

 

i j k l o 
14 10 7 3 1 
15 11 8 4 2 
16 12 9 5  
 13  6  

 
Table 2. Transportation cost between cities (dollars/km). 

 

City 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3.7 4.9 9.0 12.5 12.8 19.4 20.8 17.8 15.2 20.5 19.2 21.3 30.4 34.1 43.7 47.7 

2 4.9 3.7 5.3 8.7 9.0 17.3 17.3 30.1 11.4 17.0 17.1 17.8 23.8 30.7 40.3 44.2 

3 9.0 5.3 3.7 4.6 4.9 13.1 13.8 11.4 8.0 9.5 13.0 17.2 11.8 26.9 36.5 39.8 

4 12.5 8.7 4.6 3.7 7.1 13.1 14.5 7.0 8.5 9.9 13.5 18.3 13.1 24.7 34.3 40.9 

5 12.8 9.0 4.9 7.1 3.7 9.4 12.3 8.0 8.2 9.7 12.8 17.3 12.6 23.5 33.4 40.4 

6 19.4 17.3 13.1 13.1 9.4 3.7 4.4 16.6 13.1 18.1 18.1 19.1 18.7 31.6 41.2 45.1 

7 20.8 17.3 13.8 14.5 12.3 4.4 3.7 17.8 16.4 20.2 19.7 22.0 21.7 33.8 42.5 46.4 

8 17.8 30.1 11.4 7.0 8.0 16.6 17.8 3.7 4.6 3.9 7.8 5.9 5.6 19.4 29.0 32.9 

9 15.2 11.4 8.0 8.5 8.2 13.1 16.4 4.6 3.7 7.3 6.1 8.9 9.0 20.6 30.1 34.1 
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City 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
10 20.5 17.0 9.5 9.9 9.7 18.1 20.2 3.9 7.3 3.7 2.9 3.9 4.1 18.1 27.4 28.2 

11 19.2 17.1 13.0 13.5 12.8 18.1 19.7 7.8 6.1 2.9 3.7 5.6 5.8 17.4 25.7 29.6 

12 21.3 17.8 17.2 18.3 17.3 19.1 22.0 5.9 8.9 3.9 5.6 3.7 3.2 15.2 18.3 27.9 

13 30.4 23.8 11.8 13.1 12.6 18.7 21.7 5.6 9.0 4.1 5.8 3.2 3.7 13.3 20.2 29.1 

14 34.1 30.7 26.9 24.7 23.5 31.6 33.8 19.4 20.6 18.1 17.4 15.2 13.3 3.7 10.9 15.2 

15 43.7 40.3 36.5 34.3 33.4 41.2 42.5 29.0 30.1 27.4 25.7 18.3 20.2 10.9 3.7 5.4 

16 47.7 44.2 39.8 40.9 40.4 45.1 46.4 32.9 34.1 28.2 29.6 27.9 29.1 15.2 5.4 3.7 
 

Also, for the first problem, other parameters are shown in Table 3. In addition, 𝜑, 𝜌, and 𝑀 are equal to 
1.1, 0.6, and 1015, respectively. Also, the value of 𝑐𝑝′ is assumed equal to 170, and the values of 𝑓௝ for this 
problem are equal to 0, 0, 114290, 180000, and the values of 𝑓௟ This problem is considered equal to 0, 0, 14285, 
20000. 

Table 3. Parameters related to the first problem. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After introducing the data related to the first problem, it is time to express the remaining parameters for 

other problems, as shown in Table 4. 
 

Table 4. The remaining model parameters' values. 
 

Parameter Index 𝑡ଵ 𝑡ଶ 𝑡ଷ 𝑡ସ 𝑡ହ 𝑡଺ 𝑡଻ 𝑡଼ 
𝑐ℎ௧ - 58 58 60 63 63 66 68 72 
𝑐𝑝௧ - 86 89 89 91 94 94 100 103 
𝑐𝑟௧ - 86 86 100 100 100 115 129 137 

𝑑௞௧ 
𝑘ଵ 3 4 3 7 8 5 10 8 
𝑘ଶ 3 3.5 3.8 6 7.5 4.8 4.8 6.5 
𝑘ଷ 3 3.2 3.5 5 5.5 4 10 2 

𝜆𝑐௜௧ 
𝑖ଵ 30 20 70 0 0 0 0 0 
𝑖ଶ 90 11 45 0 0 0 0 0 
𝑖ଷ 95 50 80 0 0 0 0 0 

𝜆ℎ௝௧ 

𝑗ଵ 10 10 10 0 0 0 0 0 
𝑗ଶ 20 20 20 0 0 0 0 0 
𝑗ଷ 10 10 10 0 0 0 0 0 
𝑗ସ 30 30 30 0 0 0 0 0 

𝜆𝑟௟௧ 

𝑙ଵ 4 4 5 4.3 4.8 5.3 5.2 10 
𝑙ଶ 5.3 4 4.9 5.3 5.7 4.1 6.9 7.1 
𝑙ଷ 8.3 4 4.6 7.3 4.5 6.3 4.7 10 
𝑙ସ 6.41 4.35 5 6 5.5 10 9.2 8.31 

𝛼௧ - 0.1 0.12 0.15 0 0 0 0 0 
𝛽௧ - 0.02 0.02 0.03 0.03 0.035 0.04 0.045 0.05 
𝜃௧ - 0.02 0.03 0.04 0.045 0.045 0.048 0.05 0.05 

𝑑௢௧
′  

𝑜ଵ 10 20 18 15 14 6 7.9 8.5 
𝑜ଶ 15 20 16 15.3 14.36 20 6.78 7 

Parameter Quantity Unit 
T 8 period (month) 
αt [0.1,0.12,0.15,0,0,0,0,0] Percent 
βt [0.2,0.02,0.03,0.03,0.035,0.04,0.045,0.05] Percent 
θt [0.02,0.03,0.04,0.045,0.045,0.048,0.05,0.05] Percent 
φ 1.1 Percent 
ρ 0.6 Percent 

1-ρ 0.4 Percent 
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According to the presented mathematical model, MOPSO and NSGAII algorithms have been used to 

evaluate the given mathematical model using the epsilon limitation method. Therefore, before analyzing 
numerical examples with NSGA II and MOPSO methods, the problem's initial solution (based on priority) has 
been defined. Thus, the initial answer is presented at this section's beginning. The meta-heuristic algorithms' 
parameter setting with the Taguchi method has been discussed at the end of the section. 

 
4.1 Initial solutions 
 

The proposed model used in this article is highly complex, so modified priority-based decoding is 
employed. This coding is based on a natural numbers’ permutation, which corresponds to the number of nodes 
at each level of two levels of the supply chain network. Figure (2) displays the modified priority-based coding 
for one of the network levels, which has three central distribution centers and four fixed demand centers. In 
the Figure, the encoding is shown as (6-1-4-7-3-5-2), where the priorities of (6-1-4-7) are related to fixed 
demand centers, and (3-5-2) are associated with the central distribution center. To decode the initial answer to 
the problem, follow these steps: 

1. The highest priority can be selected considering the distribution centers/demand points. 
2. The distribution center/demand points determine the lowest shipping cost. 
3. The selected center's minimum demand and capacity are calculated as the amount of transferred 

product. 
4. Demand quantity and capacity are updated after allocation. 
5. If the capacity or demand becomes 0, its priority will be reduced to zero. 
6. This action is calculated until all the demand priorities, or the capacity is not reduced to 0. 

 
 Distribution centres Demand centres (customer) 
Node 1 2 3 1 2 3 4 
Priority 2 5 3 7 4 1 6 

 

Figure 2. How to encrypt and decrypt based on priority. 
 
The initial solution provided is only for two levels of a supply chain network; due to the multi-level nature 

of the closed-loop supply chain network design in this article, the initial solution should be calculated for each 
level. 

 
4.2 Parameter setting of meta-heuristic algorithms 
 

We use a response variable, a combination of four criteria, to set the parameter. To calculate its value, we 
use the following formula. Since the requirements have varying levels of importance, we determine the weight 
coefficients used for them. 

 
 

𝑅௜ =
𝑁𝑃𝐹ଵ
തതതതതതത + 𝑀𝑆𝐼ଶ

തതതതതതത + 𝑆𝑀ଷ
തതതതതത + 𝐶𝑃𝑈 − 𝑡𝚤𝑚𝑒തതതതതതതതതതതതതതതത

𝑤ଵ + 𝑤ଶ + 𝑤ଷ + 𝑤ସ
 

(38) 
 

Parameter Quantity Unit 
λcit Uniform ~ [30,100] Ton 
fj Uniform ~ [114290,185715] Dollar 
fl Uniform ~ [14285,22855] Dollar 

cht [58,58,60,63,63,66,68,72] Dollars/ton 
cpt [86,89,89,91,94,94,100,103] Dollars/ton 
crt [86,86,100,100,100,115,129,137] Dollars/ton 
cp' Uniform ~ [143,172] Dollars/ton 
dkt Uniform ~ [3,10] Ton 
λhj 10 or 20 or 30 Ton 
λrt Uniform ~ [4,10] Ton 
d'ot Uniform ~ [5,20] Ton 
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In the above relationship, NPF is the number of effective solutions, MSI is the maximum extent, SM is the 
distance metric, and CPU-time is the computing time. To adjust the parameter of the NSGA-II algorithm, we 
defined the factors and their level considering Table 5. 

 
Table 5. Factor levels used for NSGA-II algorithm. 

 

Level 3 Level 2 Level 1 Parameters 
100 70 50 nPop 
0.8 0.5 0.2 pc 
0.4 0.3 0.2 pm 

 
Using Minitab software and the standard Table of orthogonal arrays in the Taguchi method, we selected 

L9(34) orthogonal arrays as the best design for models three to six. The orthogonal arrays of this design are 
shown in Table 6. 

Table 6. L9(34) orthogonal arrays for NSGA-II algorithm. 
 

Pm Pc nPop Test number 
1 1 1 1 
2 2 1 2 
3 3 1 3 
2 1 2 4 
3 2 2 5 
1 3 2 6 
3 1 3 7 
1 2 3 8 
2 3 3 9 

 
Since in each problem, the value of 𝑅௜ differs and cannot be used directly, the relative percentage deviation 

(RPD) is applied. 
 

𝑅𝑃𝐷 =
𝐴𝑙𝑔௦௢௟ − 𝑀𝑖𝑛௦௢௟

𝑀𝑖𝑛௦௢௟
× 100 

 
(31) 

In the given relation, Algsol and Minsol represent the 𝑅௜ values obtained during each experiment iteration 
and the best solution obtained, respectively. 𝑅௜ value is converted to RPD, and the S/N ratio is computed based 
on RPD, according to the Taguchi parameter design structure. Then, the average S/N ratio of all experiments 
is computed for each parameter level. The optimal levels of factors result in the minimum ratio of the desired 
average, i.e., each parameter's best value has the lowest average value of the averages. After running the 
Taguchi test, the results, average means, and average S/N ratio for each level of factors in the NSGA-II 
algorithm for the model are shown in Figures 3 and 4. 

 

 
 

Figure 3. Plot of mean averages for NSGA II algorithm. 
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Figure 4. Plot of average S/N ratio for NSGA II algorithm. 
 

Figures 3 and 4 indicate that the NSGA-II algorithm factors optimal level is equal to: 
 

Table 7. Factors optimal levels (NSGA-II) 
 

Optimum 
factor level 

Levels of factors 
3 2 1 Parameters 

70 100 70 50 nPop 
0.2 0.8 0.5 0.2 pc 
0.2 0.4 0.3 0.2 pm 

 
Table 8 defines the factors and their levels for the MOPSO algorithm, and Table 10 defines the orthogonal 

arrays relating to Table 9. 
 

Table 8. Factor levels used for the MOPSO algorithm. 
 

Level 3 Level 2 Level 1 Parameters 
100 75 50 nPop 
150 100 70 nRep 
0.7 0.6 0.5 W 
1.5 1.25 1 C1 
1.5 1.25 1 C2 

 
Table 9. L9(35) orthogonal arrays for MOPSO algorithm. 

 

C2 C1 W nRep nPop Test Number 
1 1 1 1 1 1 
2 1 1 1 1 2 
3 1 1 1 1 3 
1 2 2 2 1 4 
2 2 2 2 1 5 
3 2 2 2 1 6 
1 3 3 3 1 7 
2 3 3 3 1 8 
3 3 3 3 1 9 
1 1 1 1 2 10 
2 1 1 1 2 11 
3 1 1 1 2 12 
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C2 C1 W nRep nPop Test Number 
1 2 2 2 2 13 
2 2 2 2 2 14 
3 2 2 2 2 15 
1 3 3 3 2 16 
2 3 3 3 2 17 
3 3 3 3 2 18 
1 1 1 1 3 19 
2 1 1 1 3 20 
3 1 1 1 3 21 
1 2 2 2 3 22 
2 2 2 2 3 23 
3 2 2 2 3 24 
1 3 3 3 3 25 
2 3 3 3 3 26 
3 3 3 3 3 27 

 
After conducting the Taguchi test, the results display the average means and S/N ratio for every factor 

level in the MOPSO algorithm in Figures 5 and 6. 
 

 
 

Figure 5. The plot of mean averages for the MOPSO algorithm. 
 

 
 

Figure 6. Average S/N ratio plot for MOPSO algorithm. 
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According to the above graphs, the optimal level of factors has been obtained as described in Table 10: 
 

Table 10. The MOPSO algorithm factor levels. 
 

Optimum factor level 
Levels of factors 

3 2 1 Parameters 
100 100 75 50 nPop 
70 150 100 70 nRep 
0.7 0.7 0.6 0.5 W 
1 1.5 1.25 1 C1 
1 1.5 1.25 1 C2 

 
After designing the initial solution and setting the parameters of the meta-heuristic algorithms, the 

numerical example has been analyzed. The maximum number of repetitions in meta-heuristic algorithms is 
equal to 100. Table 11 displays the average and results from NSGA II, MOPSO, and the epsilon method of the 
limit. 

Table 11. Meta-heuristic algorithms compare indices in the sample problem. 
 

Indicator Epsilon Constraint NSGA II algorithm MOPSO algorithm 
Computational time 97.68 18.88 6.64 

The average of the OF1 563498.02 573954.21 569563.94 
Average of the OF2 49716.35 49622.11 49371.86 

NPF 6 10 9 
MSI 35686.25 36643.30 35751.92 
SM 0.76 0.476 0.381 

 
Based on the data presented in Table 11, it can be observed that the MOPSO algorithm takes less 

computational time compared to the NSGA II algorithm and the epsilon constraint method when solving the 
sample problem. However, the NSGA II algorithm performs better when finding the number of efficient 
solutions than the MOPSO algorithm and the epsilon method. The results of Table 11 demonstrate the 
effectiveness of meta-heuristic algorithms in achieving near-optimal solutions quickly without compromising 
accuracy. The Pareto front obtained from solving the example problem is illustrated in Figure 7. 

 
Figure 7. Pareto front of the small-size problem. 

Z
2
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4.3 Sample problems (larger sizes) applying NSGA II and MOPSO 
 

To tackle sample problems on a larger scale, a set of 15 sample problems has been created using random 
data based on a uniform distribution. For each sample problem, five problems of the same size have been 
created within the defined data range. The averages of each index have been evaluated and compared to provide 
a basis for comparison. The significance of the difference between the averages of each index has been 
evaluated using the T-Test statistical test. Finally, the TOPSIS method has been used to determine the most 
efficient algorithm for solving the problem of the closed-loop supply chain network. The problem sizes were 
randomly generated using MATLAB software. 

 
Table 12. Dimensions of the problem. 

 

Issue number I J K L O 
1 3 4 3 4 2 
2 5 7 5 7 4 
3 7 10 7 10 6 
4 9 13 9 13 8 
5 15 22 15 22 14 
6 17 25 17 25 16 
7 19 28 19 28 18 
8 25 37 25 37 24 
9 35 52 35 52 34 
10 37 55 37 55 36 
11 39 58 39 58 38 
12 41 61 41 61 40 
13 45 72 45 65 45 
14 50 75 48 68 48 
15 53 78 50 70 50 

 
To solve each sample problem to prevent random data generation, five other problems in the same 

generation and with the problem were solved, and the average of the calculation results was utilized as the 
evaluation and comparison basis. Tables 13 and 14 show the average OFs and meta-heuristic algorithms 
comparison indices. 

Table 13. Average OFs and comparison indices (NSGA II) 
 

Sample 
problem 

OF1 OF2 
Number of 
effective 
solutions 

The index of the 
greatest 

expansion 

Distance 
index 

Computational 
time 

1 633806.72 62601.70 9 270273.91 0.37 34.46 
2 778692.87 78381.54 19 585593.25 0.77 108.00 
3 881581.31 85446.74 20 479316.63 0.70 170.30 
4 1033814.58 90080.84 14 850298.87 0.57 242.53 
5 1674913.50 103382.09 14 1129077.89 0.41 335.50 
6 2369557.62 114251.75 22 1508175.51 0.55 434.40 
7 2500890.63 125554.34 23 1797128.03 0.53 545.77 
8 3416474.10 132080.49 18 2739770.014 0.57 669.07 
9 4301935.98 140272.83 21 2529228.60 0.40 819.60 
10 4860023.44 159821.22 23 3529017.44 0.75 959.67 
11 5040590.70  163061.03 23 3087180.76 0.74 1040.13 
12 8540218.42 178342.69 23 4883033.12 0.69 1326.00 
13 8887924.17 182872.57 30 3839628.23 0.66 1528.37 
14 10361985.83 193154.36 21 4564232.62 0.77 1802.27 
15 12608666.41 207290.80 24 5383709.71 0.87 2640.00 
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Table 14. Average OFs and comparison indices (MOPSO). 
 

Sample 
problem 

OF1 OF2 
Number of 
effective 
solutions 

The index of the 
greatest 

expansion 

Distance 
index 

Computational 
time 

1 635858.69 60567.22 8 109850.13 0.46 34.40 
2 776699.89 71074.60 14 329845.53 0.62 39.07 
3 871134.25 89693.95 8 370471.43 0.23 51.66 
4 1046187.49 94437.00 16 463108.57 0.59 95.93 
5 1653146.41 107002.93 18 817523.73 0.35 131.20 
6 2353344.2 115415.91 23 1526123.70 0.49 280.50 
7 2450251.68 123910.36 16 2008648.76 0.55 349.16 
8 3434001.90 136349.08 31 2559860.14 0.75 494.70 
9 4334688.39 148225.98 28 3694417.30 0.64 723.16 
10 4817592.14 151730.43 19 2215230.18 0.59 980.40 
11 5020566.34 165792.57 12 2437807.90 0.76 1328.75 
12 8500502.39 175673.57 25 3887334.58 0.44 1834.56 
13 8759033.18 187113.32 12 3757576.19 0.72 2337.30 
14 10251098.76 192138.59 12 4593286.90 0.66 2983.04 
15 12554017.27 207281.68 17 5138916.08 051 3957.90 

 
Tables 13 and 14 display the mean values of OFs and comparison indices of meta-heuristic algorithms for 

each sample problem using NSGA II and MOPSO algorithms. To compare the results obtained, a T-test was 
performed at a 95% confidence level to determine the significant difference between the mean values of each 
index. If the P-test statistic value obtained for each index is less than 0.05, the null hypothesis is rejected, 
indicating a significant difference between the mean values of that index. Conversely, if the P-test statistic 
value is greater than 0.95, hypothesis 1 is rejected, indicating no significant difference in the mean values of 
that index. 

 
Examining the T-Test on the averages of the OF1 
 

Table 15 displays the T-test output results for the averages. Additionally, Figure 8 presents a box plot for 
accepting or rejecting the null hypothesis in T-test. 

 
Table 15. T-test results on the averages. 

 

 
Based on Table 15 and the P test statistic value, we can conclude that there is a significant difference 

between the average values of the OF1 obtained by using NSGA II and MOPSO algorithms. Based on the 
minimization mode of the OF1, it can be inferred that the MOPSO algorithm has performed better than the 
NSGA II algorithm in this index. 

Based on the box diagram shown in Figure 8, it can be concluded that the averages of the OF1 obtained 
from the NSGA II and MOPSO algorithms differ significantly because the zero assumption is not included in 
the obtained interval. 

 
Examining the T-test test (OF2) 
 

Table 16 displays the T-test results for the averages of the OF2. Figure 9 depicts the box plot for accepting 
or rejecting the null hypothesis in the T-test. 

 

Algorithm Samples Average S.d. Confidence interval (95%) T-test P-test 
NSGA II 75 5626072 3852039 

(4040*53686) 2.94 0.026 
MOPSO 75 4497208 3821250 



J. M. Ghasemi et al.: A fuzzy chance-constrained programming model… 112 
________________________________________________________________________________________________________________________ 

Table 16. T-test output results on the averages. 
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Figure 8. Box plot to confirm or reject the null hypothesis. 
 
According to the P test statistic in Table 16, there is no significant difference between the averages. 

Therefore, multi-attribute decision-making methods can be applied to compare the most efficient algorithm. 
 

 
 

Figure 9. Box plot to confirm or reject the null hypothesis of the OF2. 
 

The results in Figure 9 reinforce those in Table 16. Based on the null hypothesis falling within the 95% 
confidence interval, we can argue that there is no significant difference between the averages of the OF2 
obtained by MOPSO and NSGA II algorithms. 
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Algorithm Samples Average S.d. Confidence Interval (95%) T-test  P-test  
NSGA II 75 134440 45240 

(-3156*1848) 0.56 0.584 
MOPSO 75 135094 45418 
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Examining the T-test test on the average number of effective answers 
 

Table 17 displays the results of the T-test on meta-heuristic algorithms' comparison indexes for the average 
number of effective answers at a 95% confidence level. 

 
Table 17. T-test output results on the average number of efficient solutions. 

 

 
Based on the P-test statistic value being greater than the critical value of 0.05, we can conclude that the 

null hypothesis of the equality of the difference between the averages of the number of effective answers is 
accepted. So, there is no significant difference between the averages of efficient solutions obtained from 
solving with meta-heuristic algorithms. 

 

 
 

Figure 10. Box plot to confirm or reject the null hypothesis for the average number of effective solutions. 
 

Figure 10 shows a box plot to confirm or reject the null hypothesis for the average number of effective 
answers, and according to the observations, we can argue that the null hypothesis can be accepted and the one 
hypothesis is rejected due to being in the confidence interval. 

 
Examining the T-test test on the averages of the most widespread index 
 

Table 18 displays the statistical comparisons of the T-test conducted on the averages of the most commonly 
used index. Additionally, Figure 11 compares the averages of the most commonly used index in all the sample 
problems by NSGA II and MOPSO algorithms. 

 
Table 18. Output results of the T-test test on the averages of the most spread index. 

 

 
 
 
 
According to the findings in Table 18, the most commonly used index averages obtained by NSGA II and 

MOPSO algorithms do not differ significantly. This test's P-test statistic value is higher than the confidence 
level considered. 
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Algorithm Samples Average S.d. Confidence Interval (95%) T-test  P-test  
NSGA II 75 20.27 5.04 

(-1.48*7.48) 1.43 0.173 
MOPSO 75 17.27 6.91 

Algorithm Samples Average S.d. Confidence Interval (95%) T-test  P-test  
NSGA II 75 2478417 1496766 

(-88459*523960) 1.53 0.149 
MOPSO 75 2260667 1661211 



J. M. Ghasemi et al.: A fuzzy chance-constrained programming model… 114 
________________________________________________________________________________________________________________________ 

 
 

Figure 11. Box plot for the null hypothesis (means of the maximum expansion index). 
 

The graph of Figure 11 shows that for the most widespread index, the assumption values of zero are placed 
in the confidence interval. 

 
Examining the T-test test on the averages of the distance index 
 

Table 19 displays the statistical comparisons of spacing index averages via T-Test. Additionally, Figure 
12 compares the spacing index averages in all sample problems with the NSGA II and MOPSO algorithms. 

 
Table 19. Output results of T-Test on average spacing index. 

 

 
 
 
 
Table 19 results and the P-test statistic (value 0.205) show no significant difference between the distance 

index averages obtained by NSGA II and MOPSO algorithms. 
 

 
 

Figure 12. Box plot for the null hypothesis (the averages of distance index). 
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Algorithm Samples Average S.d. Confidence Interval (95%) T-test  P-test  
NSGA II 75 0.623 0.152 

(-0.0405*0.1725) 1.33 0.205 
MOPSO 75 0.557 0.147 
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Figure 12 complements Table 19 by showing rejection of Hypothesis 1 and no significant differences in 
spacing index averages. 

 
Examining the T-test test on the computing time averages 
 

Table 20 presents the T-test results on average computing time. Also, Figure 13 shows a box diagram for 
the null hypothesis. 

 
Table 20. The T-test results on average computing time 

 

 
 
 
 

According to the value of the P-test statistic, we can conclude that there is no significant difference between 
the computing time averages with MOPSO and NSGA II algorithms. 

 

 
 

Figure 13. Box plot for the null hypothesis for computing time averages. 
 

Figure 13 displays the null hypothesis, indicating no significant difference between the average computing 
time of MOPSO and NSGA II algorithms. Additionally, figure 14 compares the averages of the OFs and 
comparison indices in the numerical examples of large size. 

The results of Figure 14 show that with the increase in the size of the problem, the first and OF2 values 
have increased, and the time to solve the problem has increased exponentially. 

Based on the data presented in Table 21, it is clear that there is only a significant difference between the 
averages of the OF1 obtained from solving sample problems with NSGA II and MOPSO algorithms. Other 
comparison indicators do not show a significant difference. 

In the previous section, we made meaningful comparisons between the averages of the computational index 
obtained from solving sample problems with NSGA II and MOPSO algorithms. We aimed to determine any 
significant differences between them. The results showed a significant difference only between the averages 
of the OF1.  

This section aims to select the most efficient algorithm using the TOPSIS multi-criteria decision-making 
method. To achieve this, we present Table 22, which shows the averages obtained from 75 sample problems. 
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Algorithm Samples Average S.d Confidence Interval (95%) T-test P-test 
NSGA II 75 844 730 

(-483*88) 1.48 0.160 
MOPSO 75 1041 1220 
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Figure 14. Comparison of averages and comparison indices of effective solutions in large numerical 

examples. 
 

Table 21. The significant difference between the average comparison indicators. 
 

 
 
 
 
 
 
 
 

Table 22. Average indices of meta-heuristic algorithms. 
 

 
After de-scaling Table 22. results, the information was entered into the MCDM engine software. The 

results showed the NSGA II algorithm efficiency with a weight of 0.6945 compared to the MOPSO algorithm 
(weight = 0.3055). Therefore, considering all the indicators and results, it is recommended to use the NSGA 
II algorithm. 

 
5 Conclusion and Future Suggestions 
 
5.1. Key Findings   
 

Numerous endeavors have been dedicated to investigating supply chain network design challenges. This 
study delves into a multi-round supply chain network design problem, encompassing various real-world 

Indicator Significant difference 
The OF1 average Yes 
The OF2 average no 

The number of effective answers no 
The most widespread index no 

Distance index no 
Computational time no 

Algorithm OF1 OF2 
Effective 
solutions 

The greatest 
expansion index 

Distance 
index 

Computational 
time 

NSGA II 4526072 45240 20.27 2478417 0.623 844 
MOPSO 4497208 45418 17.27 2260667 0.557 1041 
Weight 0.4 0.4 0.05 0.05 0.05 0.05 
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intricacies. It scrutinizes the executive decisions tied to energy production within the power plant, which are 
integral for supply chain management. These decisions include facility placement, procurement of raw 
materials, and investments in diversifying activities within the power plant's supply chain structure. 
Additionally, the study addresses the uncertainty associated with demand and cost using fuzzy chance-
constrained programming.   

The study also incorporates a service level indicator into the performance measurement and goal function. 
While various investigations have explored power plant supply chain design, the complexities arising from 
demand uncertainty, along with other inherent risks in the power plant supply chain, present significant 
challenges. These factors, such as minimizing transportation, construction, and production costs while 
maximizing supply chain responsiveness, compound the complexity and heighten the supply chain's 
vulnerability. This necessitates thorough consideration in the decision-making process. 

 
5.2. Metaheuristic Algorithm Comparison   
 

To assess the mathematical model's efficacy on a larger scale, two metaheuristic algorithms—MOPSO and 
NSGAII—were employed to analyze the model's results. This approach aids in evaluating and validating the 
model's performance in more extensive scenarios. After analyzing the results of the two algorithms, it was 
concluded that the MOPSO algorithm has superior computing time compared to the NSGAII algorithm. 
Additionally, MOPSO exhibited better performance in the first and second objective functions. 

However, regarding other analytical parameters such as NPF, MSI, and SM, the NSGAII algorithm 
outperformed MOPSO. Using the TOPSIS method, it was determined that NSGAII, with a weight of 0.6945, 
was more favorable than MOPSO. These findings provide valuable insights into the trade-offs between 
computational efficiency and solution quality across different objective functions and performance metrics. 

 
5.3. Future Research Directions 
 

In addition to exploring new combined metaheuristic algorithms, such as the jumping frog and red deer 
algorithms, several other potential areas for further research are identified: 

1. Stochastic Programming for Uncertainty Management:   
   Future studies could incorporate stochastic programming to handle other forms of uncertainty, such as 

fluctuating fuel prices or unforeseen disruptions in supply chains. This could lead to a more dynamic and 
adaptive model that accounts for sudden market shifts and improves decision-making under uncertainty. 

2. Multi-Product Supply Chains:   
   The current model could be extended to address multi-product supply chains, where power plants rely 

on various raw materials rather than a single product. While this would increase the complexity of the model, 
it would make it more applicable to real-world scenarios where multiple energy sources are involved. 

3. Real-Time Decision-Making:   
   Researchers could evaluate the performance of the model in real-time decision-making environments, 

where rapid adjustments to supply chain disruptions (e.g., natural disasters or geopolitical instability) are 
required. Integrating real-time data analytics and machine learning techniques could improve the model’s 
responsiveness and accuracy under dynamic conditions. 

4. Environmental and Sustainability Impacts:   
   Future studies could focus on the environmental and sustainability impacts of supply chain decisions, 

such as minimizing the carbon footprint or optimizing waste management in recycling centers. Incorporating 
life cycle assessment (LCA) metrics into the model would provide a more holistic view of the environmental 
benefits and costs of supply chain operations. 
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