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Deepfake how effective the SWIN Transformer, a new transformer-based
Image classification architecture, is for detecting deep fake images. The foundation of
SWIN trans- formers the suggested detection framework is an architecture made up of
fake image generation bottleneck, encoder, and decoder parts which is a type of SWIN
image detection, transformer. It uses various self-attention mechanisms and
Hierarchical Representation advanced features to analyse the images closely whether it is a real
Transformer Block image or a deepfake one. It relies on the concept of shifted windows
OQuadratic Complexity during the processing of the images and is considered more
SWIN Transformer blocks effective than the traditional CNN methods. Our test results show
Object Detection how well the SWIN Transformer-based method performs in
DOI- 10.30765/er.2583 precisely recognizing deep fake images. The accuracy is found to

be 97.91\% for CelebDF dataset and 95.715\% for FF++ dataset.
The AUC for the newly modelled SWIN transformer is 0.99 and
0.9625 for CelebDF and FF++ datasets respectively. The Log
Loss was calculated to be 0.034 for CelebDF dataset and 0.1573
for FF++ dataset. The proposed methodology not only enhances
the accuracy of detecting manipulated images but also offers
potential for scalable and efficient deployment in real-world
scenarios where the proliferation of deepfakes presents significant
challenges to maintaining trust and authenticity in visual media.

1 Introduction

Human faces play a crucial role in communication, association of information, and identity in human
civilization. From access control and payment, to unlocking our phones, face recognition is an inevitable part
of our life now. They manipulate facial images to commit fraud and pose as genuine users. This type of
manipulation has become ubiquitous and raises eyebrows specifically in social media content. The level at
which realism has been achieved in face synthesis is truly alarming. In recent years, advanced deep learning
technologies have led to the rise of these deepfakes. These are highly realistic fake images and videos created
using artificial intelligence [1]. They pose a big challenge to the credibility of digital content because they can
make it seem like people are doing or saying things they never actually did. This creates an urgent need for
effective ways to spot and reduce the spread of deepfake content. To tackle this problem, researchers are
exploring different methods for detecting deepfakes. Deepfake is primarily a face-swapping algorithm that
makes use of Neural Networks to create new images [2]. The facial features are mapped from one image to the
other giving it a realistic look. The creation of deepfake includes an encoder, a bottleneck and a decoder [3].
The encoder compresses the original image by reducing its dimensions. The bottleneck produces the
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compressed representation of our data. Following the bottleneck, we have the decoder which takes in the vector
and turns it into the full-sized image. So input is taken from the encoder which is then reconstructed back.
Figure.1 represents the general architecture of deepfake.
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Figure 1. General DeepFake Architecture

Many research works have been proposed. Initial works detect the tampering through visual biological
artifacts like inconsistent head poses and unnatural eye blinking. With the rise of learning-based methods,
some studies have developed frameworks that extract features from spatial domains. These frameworks have
shown excellent performance on specific datasets. A few methods detect forged faces through Spatial,
Steganalysis, and Temporal features. This adds a stream of simplified Xception with a constrained convolution
layer and an LSTM [4]. Many current approaches to deep fake detection oversimplify the problem by treating
it as a straightforward binary classification task [5]. They focus on creating advanced feature extractors and
then use a simple method to distinguish between real and fake faces. However, the photo-realistic counterfeits
bring significant challenges to this binary classification framework. The deepfake detection problem has hence
been redefined as a fine-grained classification problem. A promising approach is using SWIN Transformers,
a type of deep learning model. They use self-attention mechanisms and advanced feature analysis to closely
examine images. This helps capture both the overall context and fine details accurately. Our research focuses
on understanding how SWIN Trans-formers work and how well they can identify Al-generated images,
particularly deepfakes. We’ll study the inner workings of the SWIN Transformer model and test how reliable
it is at spotting deepfakes across different datasets and situations. The goal is to provide useful insights into
computer vision and deepfake detection. By studying SWIN Transformers, we hope to give people better tools
to fight against fake media and promote trust and honesty in digital platforms [7]. Here, we will proceed to
critically analyse SWIN transformers, it is nothing but a significant and powerful innovation of vision
transformers (ViT). Transformers ‘exceptional performance has been demonstrated in various computer vision
tasks, such as instance segmentation, image classification, and object detection [8]. The study uses machine
learning algorithms to investigate the relationship between overall health, blood pressure and stroke risk. The
study also analyses databases of stroke patients and reviews the literature to assess the impact of health
indicators on stroke risk and evaluate the effectiveness of identified algorithms Findings aims to improve
seizure prevention, treatment, and diagnostic tools and to help researchers understand algorithm performance
for seizure prediction [26].

Traditional transformers lack the ability to process images patch by patch. This is where the SWIN
Transformer comes in, it divides the image into non-overlapping shifted windows to initiate efficient and
scalable computation [9]. The problem of quadratic complexity (usually found in vanilla transformers) is easily
tacked by its hierarchical design whilst computing high- resolution images. SWIN Transformer is also ideal
for a large and small dataset due to its adaptability as a result of its design. The image is first divided into
patches in a hierarchical manner. Then, these patches are merged as the network goes deeper to capture both
global and local features. The window-based self- attention and shifted windows concept reduces computation
ultimately improving the performance. SWIN Transformers truly have emerged and lived up to the idea of a
ground- breaking advancement in the world of computer vision and technology [10]. Its ability to be flexible,
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scalable and act as an efficient solution for visual recognition tasks allows it to make way for new
breakthroughs in the deep learning and computer vision space. Coupled with its capability to capture long
range dependencies, without a doubt, SWIN Transformers are indeed a promising choice for modelling
complex visual patterns It would not be surprising at all if, SWIN Transformers, are at the forefront of research
and practical implementations in various deepfake detection, segregation and other visual imagery related
issues.

Other than object and Deepfake detection, upon researching we have come across applications of SWIN
transformer in across a spectrum of domains [11]. To name a few; Remote photoplethysmography for heart
rate measurement, transformers in medical image segmentation, brain and vision transformers for autism
spectrum disorder diagnosis and classification, air pollution measurement based on a hybrid convolutional
neural network with a spatial-and-channel attention mechanism, and Earth Observation. The paper follows a
structured approach: we begin with an overview of deepfake technology and the importance of effective
detection methods. Next, we delve into existing research on deepfake detection and Transformer architectures
in computer vision. We then introduce our model, explaining how we’ve adapted the SWIN Transformer for
deepfake detection. After that, we detail our experimental setup, including datasets, training methods, and
evaluation criteria. Following this, we present and analyse our experimental results, discussing their
implications and limitations. Finally, we conclude by summarising our key findings and suggesting future
research directions. This structured approach aims to make our research methodology, results, and
contributions accessible to readers.

2 Literature Review

The margin at top should be set to 3.5 cm, while bottom, left and right margin should be set to 2 cm. The
header position from the top should be set at 2.3 cm. The text of the paper should be arranged in sections and
when necessary, into subsections. Sections should be numerated with one Arabic numeral, and subsection with
two Arabic numerals e.g. 1.1, 1.2, 1.3 etc. The paper's title should be brief and informative, it must also clearly
describe the paper's subject matter. The emergence of SWIN Transformers represents a pivotal advancement
in bridging the gap between language and vision domains, particularly in the realm of deepfake detection. By
employing a hierarchical transformer architecture with shifted windows, SWIN Transformers efficiently
compute representations, facilitating multi-scale modelling with linear computational complexity. This
transformative capability extends beyond deepfake detection, with applications spanning various domains. In
[12], in order to improve computational efficiency, the authors devised a hierarchical Transformer with shifted
windows, which limits self-attention to non-overlapping local windows. This facilitates cross-window
connections, enabling flexible modelling at different scales with linear computational complexity relative to
image size. In [13], the authors present SWINIR, which consists of components for high-quality im- age
reconstruction, deep feature extraction, and shallow feature extraction. Multiple residual SWIN Transformer
blocks (RSTBs), each with SWIN Transformer layers and a residual link, are integrated by the deep feature
extraction module. Tasks including JPEG compression artifact reduction, colour and grayscale image
denoising, and different types of image super-resolution—classical, lightweight, and real-world—are all
covered by the model.

In [14], the authors explored scaling SWIN Transformer to 3 billion parameters, enabling training with
images up to 1,536x1,536 resolution. Innovations include residual post- normalization and scaled cosine
attention for model stability. They introduced a log-spaced continuous bias technique to effectively transfer
pretrained models from low to higher resolution images and windows. In [15], the authors employed shifted
windows with multi-head self-attention (W-MSA/SW- MSA) for texture preservation. The network comprised
input modules, feature extraction modules, and output modules, with a novel multi-channel loss integrating
sensitivity maps. In [16], the authors introduced DS-TransUNet, a deep medical image segmentation
framework that combines a conventional U-Net design with hierarchical SWIN Transformer. By simulating
multiscale contexts and non-local dependencies in medical images, it improves the quality of semantic
segmentation. In [17], the authors devised a window shift scheme enhancing feature transfer for defect
detection, utilizing an improved Vision Transformer. Annotated 4000+ images of metal defects, achieving
superior performance in surface-defect detection. Fine-tuned the model via transfer learning for enhanced ac-
curacy.
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In [18] The authors introduced MoBY, a self-supervised learning method employing Vision Transformers.
After 300 epochs of training, it combined MoCo v2 and BYOL to obtain high accuracy on ImageNet-1K linear
evaluation: 72.8% and 75.0% top-1 accuracy with DeiT-S and SWIN-T, respectively. In [19] the authors
proposed a method incorporating intra- domain fusion using self-attention and inter-domain fusion employing
cross-attention to integrate long dependencies within and across domains. This enables full extraction of
domain- specific information, cross-domain complementary integration, and maintenance of global intensity
perspective. In [20], the authors have proposed a novel semantic segmentation framework for RS images
called ST-U-shaped network (UNet), which embeds the SWIN transformer into the classical CNN- based
UNet. In [21], in order to recover the low-resolution compressed image, the authors have presented the
Hierarchical SWIN Transformer (HST) network, which simultaneously captures the hierarchical feature
representations and improves each- scale representation using SWIN transformer. In [22], the authors proposed
a cross-modality fusion model, SWINNet, with the purpose of RGB-D and RGB-T salient object detection. It
is aided with the SWIN Transformer to extract the hierarchical features, boosted up by an attention mechanism
which bridges the gap between two modalities, and guided by edge information to sharp the contour of salient
objects. In [23], the authors have investigated key challenges including the use of transformers in different
learning paradigms, improving model efficiency, and coupling with other techniques. In [6], the authors
presented AVFakeNet, a deepfake detection frame- work integrating audio-visual modalities. Their unified
model, Dense SWIN Transformer Net (DST-Net), consists of input, feature extraction, and output blocks.
Dense layers compose the input and output blocks, while a customized SWIN Trans- former module is
employed in the feature extraction block.

In this work [24], the authors introduced semantically- relevant contrastive learning (SRCL), enhancing
SSL, which compares instance relevance to produce more positive pairs. In order to improve universal feature
representations for histopathology problems, a hybrid model called CTransPath—which combines a CNN and
multi-scale SWIN Transformer—is used to pretrained on unlabelled histopathological pictures. This model
functions as a collaborative local- global feature extractor. In [25], the authors enhanced SWIN Transformer
with CNN advantages, introducing Local Perception SWIN Transformer (LPSW) to boost local perception for
small-scale object detection. They developed SAIEC frame- work to improve segmentation accuracy. Overall,
in image pro- cessing, SWIN Transformers demonstrate remarkable efficacy in tasks such as image restoration
[13] and resolution scaling [14][21]. Their versatility extends to the field of medical science, where they
contribute to faster MRI processing [15], as well as enhancing medical image segmentation and analysis
through integration into frameworks like U-Net [16][20][23]. Notably, the SWIN Transformer’s segmentation
accuracy renders it suitable for applications in salient feature detection [22] and remote sensing object detection
[25]. The unique attributes of SWIN Transformers, including the shifting windows and hierarchical structure,
enable the effective collection of multi-scale characteristics critical for discerning subtle discrepancies
indicative of deepfake manipulation like in AVFakeNet [6]. The diverse applications of SWIN Transformers
underscore their versatility and effective- ness across various domains. Their ability to capture intricate details
at multiple scales positions them as valuable tools for detecting anomalies indicative of deepfake manipulation.
As the threat of deepfake proliferation continues to escalate, leveraging SWIN Transformers offers a promising
avenue for enhancing detection capabilities and preserving the integrity of visual media.

3 Proposed Model

This work deals with the efficacy of SWIN Transformers, a sophisticated class of deep-learning models
leveraging self-attention mechanisms and advanced feature analysis. By closely scrutinizing images, they
adeptly capture both overarching context and intricate details. Specifically, we investigate their effectiveness
in discerning Al-generated images, with a particular emphasis on deepfakes. The details architecture of the
complete module is represented in Figure.2. In Figure.2 the modules 1(a),1(b) are patch partitioning and 1(c)
represents liner embedding, 1(d),1(e) and 1(f) represents SWIN block, SWIN transformer and region merging
and the details diagram shown in Figure.3, Figure.4 and Figure.5.

3.1 Architectural Description

The input image first passes through the following blocks:
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1. Encoder: The primary aim of encoders in classification is to look for the target region and extract
contextual and required characteristics from them.

2. Patch Partitioning: Image originally being of the size 256 x 256, is further divided into patches of 4 x
4 size. This forms a grid of 64 x 64 size. Here it starts with a small patch size and then increases the
patch sizes as the layers increase. Each small image portion/ patch is a coloured image with Red,
Green, and Blue as its colour channels. The RGB input image is first divided into non-overlapping
windows. Each patch is then handled like a token and has its feature set transformed to raw pixel
values. The final feature set dimension size increase to 4 x 4 x 3 = 48.
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Figure 2. Detailed Architecture to Detect Deepfake Images
3.2 Linear Embedding:

Converts images to a numerical form (sequence of tokens) or AD (Arbitrary Size). As trans-
former works with a sequence of tokens. This helps converts a patch into a C-dimensional token
(dependent on the the model size). Each token from a patch lets us calculate the attention followed
by a feature extraction.

T
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Figure 3. SWIN block in SWIN transformer
3.3 SWIN block in Transformer:

The SWIN block differs from MSA (multi-head self-attention layer) by utilising shifted windows. Both
the WMSA (window-based) and SWMSA units are used in the SWIN transformer blocks. The composition
of the block is depicted in the schematic diagram. Displacing window by [M/2, M/2] px from the regularly
partitioned windows. (here 2 x 2 shift, M=4 patch size) Disadvantage of shifted window partitioning is that
this con- figuration has more windows and some windows are smaller in second configuration as compared to
the first configuration. SWIN transformer solves this problem using cyclic shifting windows, where the
windows on the fringes are padded with each other. In the last portion of the image, A and C are not next to
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each other in real life, hence passed through Masked MSA Displacing window by [M/2, M/2] px from the
regularly partitioned windows. (here 2 x 2 shift, M=4 patch size). The disadvantage of shifted window
partitioning is that this configuration has more windows and some windows are smaller in the second
configuration as compared to the first configuration. SWIN transformer solves this problem using cyclic
shifting windows, where the windows on the fringes are padded with each other These are not next to each
other in real life, hence passed through Masked MSA. The transformer architecture of the SWIN block is
shown in Figure.3.

3.4 SWIN Transformer:

Layer Normalization helps in estimating the normalization statistics without introducing any more
dependencies between the training set shifted window multi-head self-attention- It takes the O/P of W-MSA
shift all windows according to the parameter and compute W-MSA in shifted windows.

e  Multi-Layer Perceptron: It is a dense layer which trans- forms any input dimension to the desired
dimension.

e W-MSA: It uses dot product-based attention encoding for each product, w.r.t all other patches as
input image. The overall architecture of SWIN transformer is shown in Fig.4.

3.5 Region Merging:

The input patches are divided into equal 4 parts combined by this layer. This boosts the feature dimension
by 4 times, a linear layer later reduces the feature dimensions back to the original 2. This entire procedure is
carried out three times paired with SWIN transformer blocks. SWIN transformer selectively merges adjacent
patches to capture the global information properly by merging 4 patches, we keep on increasing the resolution.
Fig.5 shows the region merging for boosting feature dimension.

Figure 4. SWIN transformer architecture
3.6 Decoder:

Region Expansion: As part of the decoding process of the SWIN Transformer, the image is upsampled
using features from the SWIN block to improve the observation of finer details.
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3.7 Bottleneck Prediction:

The bottleneck block uses two successive SWIN Transformer units to overcome the difficulty of learning with
deeper layers. By strategically balancing dimensionality and feature resolution, this method maximises the
model’s learning and representational capabilities. Together, these essential elements give the SWIN
Transformer the ability to absorb and interpret visual data well for a variety of tasks. An additional key feature
of the SWIN Transformer is input padding, where the model ensures the handling of images of varying
dimensions, of any height or width if it’s a multiple of 32. This feature increments the flexibility of the overall
pre- processing. The hierarchical partitioning functionality allows the capture of both local and global features
as the network deepens (layers increase), by merging the smaller patches into larger ones. The larger image
and patch detect the global and local features of the image respectively. The complete block diagram of this is
shown in Figure 6. This phase consists of 2 subsections:
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Figure 6. Complete Block Diagram

e Pooling layer: Here we witness the following procedures taking place. Dimensionality reduction -
usually used to control overfitting in a dataset and decreasing the number of parameters. Here we
witness the following procedures taking place. Dimensionality reduction, usually used to control
overfitting in a dataset and decreasing the number of parameters. Feature Extraction aids in keeping
the most relevant features and discarding the rest. Spatial Hierarchy, enables the network to go deeper
and capture an increasing resolution of global and abstract features.

e Fully Connected Layer the FC layer is the final stage of this model, responsible for converting the
extracted features into a format that can be easily used to make predictions and draw conclusions. It
consists of one or more fully connected layers of neurons, where the number of neurons depends on
the size of the input dataset and the complexity of the task. As we approach the output layer, the
number of neurons gradually decreases. Since we are performing binary classification (Deep/Fake),
we will use a single output neuron with the most appropriate activation function.
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4 Result and Discussion

The proposed model has been assessed on Celeb-df and FaceForensicst+ datasets on the basis of accuracy
and AUC. Additionally, the following preprocessing could be potentially useful for our dataset to ensure that
the data is suitable for training a machine-learning model and can lead to improved model performance.
Determining whether a dataset of photos needs pre-processing depends on the nature of the dataset, the specific
task you’re aiming to perform, and the characteristics of the images. Here are some common reasons why you
might consider pre-processing a dataset of photos:

e Image Quality: Check for variations in image quality, such as lighting conditions, resolution, or noise.
Pre- processing may involve standardizing image quality to ensure consistency.

e Normalization: Normalize pixel values to a common scale. This is important if the images have
varying

e intensity levels, ensuring the model receives consistent input.

e Noise Removal: Remove noise or artifacts from images that might interfere with model training or
affect the quality of predictions.

e Data Augmentation: Apply data augmentation techniques to artificially increase the diversity of the
dataset. This can involve random rotations, flips, or adjustments to brightness and contrast.

e Labelling Consistency: Ensure labelling consistency within the dataset. If labels are inaccurate or
inconsistent, it can affect the model’s performance.

e Outlier Detection: Identify and handle outliers, which may be images that don’t conform to the typical
characteristics of the dataset.

e Data Balancing: Check if the dataset is imbalanced (some classes have significantly fewer samples
than others) and consider strategies like oversampling or under sampling to address this imbalance.

e Missing or Corrupt Data: Identify and handle missing or corrupt images in the dataset. We have also
compared it with traditions CNN models and presented the data in the Table 1, 2, 3 and 4 below. The
same also can be visualised on Celeb-df and FaceForensics++ dataset in Figure.7, Figure.8, Figure.9.

Table 1. Xception

Parameters
Dataset Accuracy AUC Log Loss
CalebDF 97 0.99 0.0712
FaceForensic++ 91.05 0.96 0.2342

Table 2. Restnet3D

Parameters
Dataset Accuracy AUC Log Loss
CalebDF 97 0.99 0.0748
FaceForensic++ 90.36 0.96 0.3224

Table 3. Res2Net-101

Parameters
Dataset Accuracy AUC Log Loss
CalebDF 98.95 1 0.0237

FaceForensic++ 93.48 0.97 0.2165
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Table 4. SWIN-T

Parameters
Dataset Accuracy AUC Log Loss
CalebDF 97.91 0.99 0.034
FaceForensic++ 95.715 0.9625 0.1573

The graphs denote the comparison of the various CNN models and SWIN transformer on the two datasets,
Celeb-df and FF++. It can be observed that SWINT gives much better accuracy on the FaceForensics++ dataset
which is a more complex dataset in comparison to Celeb-DF overshadowing its falling behind with Res2Net-
101 in the Celeb-DF dataset since Celeb-DF is a simpler dataset. Hence, we can conclude that SWINT performs
much better considering the complexity of the datasets. The project has achieved partial fulfilment, yielding
several outcomes.

A partial solution for deepfake detection has been implemented, showcasing effectiveness in identifying
manipulated content to some extent, though improvements in coverage and accuracy are needed. Valuable
insights gleaned from the project have informed future research directions and enhancements in deepfake
detection methodologies.

Additionally, a prototype or proof-of-concept implementation has been developed, demonstrating
fundamental functionality and laying the groundwork for further refinement. The project has also identified
limitations and gaps in the proposed methodology, such as scalability issues and technical challenges,
providing crucial insights for future iterations. Furthermore, the partial completion of the project has set the
stage for future collaborations and endeavours. Researchers can build upon the existing framework, leveraging
insights gained and addressing remaining challenges to advance the field of deepfake detection. Although the
project’s partial fulfilment does not constitute a fully operational deepfake detection system, it has nonetheless
contributed valuable knowledge and paved the way for ongoing advancements in combating synthetic media
manipulation.
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5 Conclusion

In our research, we introduced a modified SWIN Trans- former architecture tailored for the classification
of deepfake images. To assess the effectiveness of our approach, we conducted evaluations using the Celeb-df
and FF++ datasets, which are widely used benchmarks in the field of deepfake detection. Our results indicate
that our modified SWIN Trans- former architecture exhibits promising capabilities in identifying deepfake
images. Specifically, we observed that our model outperformed traditional CNN models in terms of
classification accuracy and overall performance. The hierarchical structure and attention mechanisms inherent
in SWIN Transformers enable better capture of spatial and contextual information, leading to more robust
classification outcomes. Overall, our study underscores the potential of SWIN Transformer-based architectures
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for deepfake detection tasks. The enhanced performance that we observed in our assessments underscores the
effectiveness of our suggested methodology and its potential to foster progress in countering the spread of
deepfake media.
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