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 Machine learning language is very valuable for depicting different 
problems, especially computer language, data mining, data 
sciences, and machine language. The circular intuitionistic fuzzy 
set (C-IFS) is a flexible approach to fuzzy sets and intuitionistic 
fuzzy sets. Keep in mind the flexibility of C-IFS, decision-maker 
used C-IFS to cope with incomplete and redundant human 
opinions accurately. Furthermore, power operators are used for 
depicting or aggregating the collection of data into a singleton set. 
In this manuscript, we explore the power operators for circular 
intuitionistic fuzzy (C-IF) information, such as C-IF power 
weighted averaging (C-IFPWA) operator, C-IF power weighted 
ordered averaging (C-IFPWOA) operator, C-IF power weighted 
geometric (C-IFPWG) operator, and C-IF power weighted 
ordered geometric (C-IFPWOG) operator. Some properties of the 
above information are also stated. Additionally, we evaluate the 
procedure of the multi-attribute decision-making (MADM) 
technique for resolving the utilization of the most suitable part of 
machine learning in complicated scenarios. Finally, we illustrate 
some numerical examples for addressing the comparison between 
proposed techniques and existing methods to show the 
effectiveness and reliability of the presented operators. 

Keywords:  
Circular intuitionistic fuzzy sets 
Power aggregation operators 
Machine learning algorithms 
Decision-making procedures 

 

DOI: 10.30765/er.2571 

 
1 Introduction 

 

Machine learning algorithms and machine language are two different techniques that are the subpart of 
artificial intelligence that concentrate on the occurrence or development of algorithms and techniques that 
enable machines to learn from decisions and predictions. These algorithms are very reliable, and many scholars 
have employed them in many fields in the consideration of classical set theory. Because of these reasons, 
experts have faced a lot of problems due to limited opinions. To enhance or modify the range of the decision, 
Zadeh [1] exposed the fuzzy set theory (FST), where FST has only one function, called truth or positive or 
membership grade such as: 𝜇஺: 𝑋 → [0,1], where 𝜇஺(𝑥) ∈ [0,1]. Some applications of the Zadeh’s principle 
are stated, for instance, extended form of fuzzy sets, called fuzzy superior Mandelbrot set [2], PROMETHEE 
techniques [3], (a,b)-fuzzy soft sets [4], fuzzy N-soft sets (FNSSs) [5], multi-fuzzy N-soft sets [6], fuzzy 
parameterized soft sets [7], fuzzy systems [8], multi-person decision-making techniques [9], and fuzzy decision 
support systems [10]. 

FST is very strong and effective because FST has only to cope with those problems that cover the one-
dimension problems, but in many cases, we face negative information about people, things, and objects. To 
cope with this kind of situation, Atanassov [11], [12], [13] explored the intuitionistic FST (IFST), where IFST 
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talked about the positive and negative grades with the characteristic that the sum of the pair will be contained 
in a unit interval. IFST has two different grades with the same domain and range, where the FST and classical 
set theory are the special cases of the IFST. Many scholars have utilized the IFST in many fields, for instance, 
similarity measures with application in emergency management and pattern recognition [14], 3D distance 
measures and their application in decision-making problems [15], analysis of multi-objective decision-making 
techniques [16], generalized similarity operators [17], distance and similarity measures [18], analysis and 
classification of parametric divergence measures [19], fairly operators and additive ratio assessments [20], and 
analysis of time-series based on higher order with IFST [21]. 

Most scholars accept the structure of IFST because it contains positive and negative grades, but during the 
analysis of rain, we have three possibilities, for instance, to give his opinion in favor of rain, to give his opinion 
against rain, and one of the most opinion, called the angle of the rain, because the angle is very important. 
After all, if we know the angle of the rain before starting, we will save ourselves. Therefore, to handle such 
kind of problems, the circular-IFS (C-IFS) was invented by Atanassov [22]. Many applications have been 
discussed as follows, for instance, analysis of four distance measures [23], divergence measures [24], TOPSIS 
techniques [25], interval-valued C-IFSs [26] TOPSIS method [27], decision-making approaches [28], AHP 
techniques [29], involved distance measures [30], AHP techniques means that analytical hierarchy process 
[31], and advanced approach and decision-making techniques for C-IFSs [32]. 

Aggregating the collection of information into a singleton set is very complicated and vague because it is 
a very challenging task for scholars. Additionally, Yager [33] also invented the power aggregation operators 
for classical set theory, which is a suitable and dominant technique for depicting awkward and vague data. 
Furthermore, the simple average operator (AVO) for IFST was exposed by Xu [34]. Moreover, the geometric 
operator (GEO) for IFST was exposed by Xu and Yager [35]. In 2018, Jiang et al. [36] derived the power AVO 
and power GEO for IFST. Hussain et al. [37] designed innovative approaches for Aczel Alsina operators for 
handling uncertain information of human opinions. Hussain et al. [38] demonstrated the characteristics of 
different solar panels to investigate the best optimal option under considering different features. Hussain et al. 
[39] modified the theory of complex picture fuzzy information to select a suitable supplier with decision 
analysis processes. Hussain et al. [40] put forward the concepts of Hernonian mean operators using Aczel 
Alsina operations. Hussain et al. [41] presented a robust selection process to evaluate different recycling 
techniques using Dombi Bonferroni Mean operators and a decision analysis process. Hussain et al. [42] 
proposed AOs of Sugeno-Weber t-norms considering an intuitionistic fuzzy system. Hussain et al. [43] 
developed an intelligent decision-making model using Frank AOs and complex picture fuzzy theory. Wang et 
al. [44] presented mathematical terminologies of Sugeno-Weber t-norms based on q-rung orthopair fuzzy 
domains. Hussain et al. [45] utilized various properties of Hamy mean models to define correction among input 
data. Ali et al. [46] enhanced various characteristics of Fermatean fuzzy theory and deduced new algebraic 
AOs for aggregating human opinions. Abed Alhaleem and Ahmad [47] demonstrated new approaches to 
intuitionistic fuzzy domains.  

Uluçay and Okumuş [48] enhanced the dealing capacity of an intuitionistic trapezoidal fuzzy theory and 
also investigated a sustainable tourism industry. Imran et al. [49] designed some robust mathematical 
approaches to Aczel Alsina AOs and Bonferroni Mean models. Sahoo et al. [50] introduced a robust binary-
coded genetic algorithm to investigate suitable supply chain enterprises. Asif et al. [51] constructed AOs of 
Hamacher t-norms under considering the theory of pythagorean fuzzy environment. Mishra et al. [52] applied 
a novel approach of an interval-valued intuitionistic fuzzy domain and distance measures to examine 
sustainable wastewater sources. Hussain and Ullah [53] put forward the concept of an advanced decision 
analysis process and Sugeno-Weber mathematical approaches. Ahmmad [54] classified some reliable energy 
sources using properties of entropy measures and q-rung orthopair fuzzy situations. Ali [55] discussed 
innovative approaches to power interaction AOs under consideration complex IFSs. Mahmood et al. [56] 
deduced robust mathematical approaches and decision analysis processes to resolve an application related to 
medical diagnosis. 

Hussain and Pamucar [57] constructed an intelligent decision-making model and AOs of Schweizer-Sklar 
t-norms based on pythagorean fuzzy information. Ahn et al. [58] applied the theory of an interval-valued IFS 
to find an authentic solution for medical diagnosis. Bibi and Ali [59] designed a dominant structure of Aczel 
Alsina AOs and decision-making methodologies. Hussain et al. [60] developed Dombi AOs based on the 
interval-valued spherical fuzzy framework. 
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1.1 Motivation Behind the Research Work 
 

The CIFSs are an advancement in FS theory designed to enhance flexibility and precision in handling 
uncertainty. Traditional FSs allow for degrees of membership and non-membership to represent uncertainty, 
while IFSs add a third parameter, the hesitation margin, to address instances where there is insufficient 
information. C-IFSs, however, go a step further by integrating a circular representation of membership, non-
membership, and hesitation, offering a more nuanced and visual representation of these values. This circular 
model allows better representation of complex data structures where relationships are non-linear or cyclical. 
The primary motivation for C-IFSs is to improve decision-making processes, especially in fields where data 
ambiguity and cyclical relationships are common, such as economics, environmental sciences, and social 
sciences. By allowing analysts to capture more detailed uncertainties, C-IFSs can lead to more accurate and 
context-sensitive decision outcomes. 

Power aggregation operators are developed to address limitations in traditional aggregation methods, 
particularly when dealing with highly diverse data or data that includes outliers. Traditional operators, like 
arithmetic means or weighted averages, may underperform or lead to biased results in cases where some values 
in the dataset significantly differ from others. Power aggregation operators mitigate this by incorporating 
exponential functions, allowing for more control over how individual data points influence the overall 
aggregation. These operators are particularly useful in applications like risk assessment and financial analysis, 
where extreme values or non-linear relationships are prevalent. The motivation behind power aggregation 
operators is to enhance the robustness and adaptability of aggregation methods, making them better suited for 
decision-making under uncertainty. By adjusting the power parameter, these operators can emphasize or 
downplay specific values, resulting in more reliable outcomes and allowing for fine-tuned analysis. 

 

 
 

Figure 1. Shows the section-wise structure of the manuscript. 
 
Decision-making approaches for machine learning operators are motivated by the need for reliable, 

interpretable, and effective ways to implement ML models in real-world scenarios. Machine learning models 
often operate as "black boxes," which limits transparency and interpretability. This is especially challenging 
in high-stakes decision environments, like healthcare, finance, and autonomous driving, where the rationale 
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behind a model's output is crucial. Decision-making approaches are designed to address this by providing 
frameworks or operators that enhance the model's interpretability and explainability, improving trust and 
accountability. Furthermore, decision-making approaches tailored for ML can also optimize model selection, 
tuning, and integration with broader decision systems. In addition, these approaches facilitate alignment with 
ethical standards and regulatory compliance, making machine-learning applications more suitable for use in 
sensitive or high-impact fields. By grounding machine learning operations in systematic decision-making 
methods, these approaches aim to make the use of ML models both safer and more effective in supporting 
complex human decisions. 

In the above discussion, we noticed that the theory of C-IFS is novel, and no one can derive a lot of 
operators based on C-IFS, the selected operators, called power operators, were not invented by anyone. 
Therefore, our main contribution is listed below: 

1) Expose an innovative theory of C-IFSs for handling uncertain information of expert opinions. 
2) To explore the C-IFPWA operator, C-IFPWOA operator, C-IFPWG operator, and C-IFPWOG 

operator.  
3) To derive the three basic properties of the above information.  
4) To evaluate the procedure of the MADM technique for resolving the utilization of the most suitable 

part of machine learning in complicated scenarios.  
5) To illustrate some numerical examples for addressing the comparison between proposed techniques 

and existing methods to show the effectiveness and reliability of the presented operators. 

This manuscript is arranged in shape: In Section 2, we revised the idea of PA operator, PG operator, C-
IFS, and their operational laws. In Section 3, we explored the C-IFPWA operator, C-IFPWOA operator. In 
section 4, we also constructed a series of geometric AOs such as C-IFPWG operator, and C-IFPWOG operator. 
Some properties of the above information are also stated. In Section 5, we evaluated the procedure of the 
MADM technique for resolving the utilization of the most suitable part of machine learning in complicated 
scenarios. In Section 6, we illustrated some numerical examples for addressing the comparison between 
proposed techniques and existing methods to show the effectiveness and reliability of the presented operators. 
Some concluding remarks are stated in Section 7. Figure 1 depicts the section-wise organization of this article. 

 
2 Preliminaries 

 

In this section, we revised the idea of PA operator, PG operator, C-IFS, and their operational laws. 
Definition 1: [33] For any finite family of positive integers 𝑎௜, (𝑖 = 1,2, … , 𝑛). The PA operator is invented 
by (1): 
 

𝑃𝐴 (𝑎ଵ, 𝑎ଶ, … , 𝑎௡) =  ∑
൫ଵା𝒜(ఈ೔)൯

∑ ൫ଵା𝒜(ఈ೔)൯೙
೔సభ

𝛼௜
௡
௜ୀଵ     (1) 

 

Noticed that Where 
൫ଵା𝒜(ఈ೔)൯

∑ ൫ଵା𝒜(ఈ೔)൯೙
೔సభ

 and 𝒜(𝛼௜) = ∑ 𝑆𝑢𝑝𝑝൫𝛼௜, 𝛼௝൯௡
௜ୀଵ
௝ஷ௜

, (𝑖 = 1, 2, … , 𝑛) represents the support 

degree between 𝑎௜ and 𝑎௝, with some properties, such as: 
 

a) 𝑆𝑢𝑝൫𝑎௜, 𝑎௝൯ ∈ [0,1] 
 

b) 𝑆𝑢𝑝൫𝑎௜, 𝑎௝൯ =  𝑆𝑢𝑝(𝑎௝, 𝑎௜) 
 

c) 𝑆𝑢𝑝൫𝑎௜, 𝑎௝൯ ≥ 𝑆𝑢𝑝(𝑎௦, 𝑎௧), if ห𝑎௜ , 𝑎௝ห < |𝑎௦, 𝑎௧| 
 

Definition 2: [33] For any finite family of positive integers 𝑎௜(𝑖 = 1,2, … , 𝑛). The PG operator is invented by 
(2): 
  

𝑃𝐺(𝑎ଵ, 𝑎ଶ, … , 𝑎௡) =  ∏ 𝑎
௜

ቀభశ𝒜൫ഀ೔൯ቁ

∑ ቀభశ𝒜൫ഀ೔൯ቁ೙
೔సభ௡

௜ୀଵ     (2) 
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Noticed that Where 
൫ଵା𝒜(ఈ೔)൯

∑ ൫ଵା𝒜(ఈ೔)൯೙
೔సభ

 and 𝒜(𝛼௜) = ∑ 𝑆𝑢𝑝൫𝛼௜, 𝛼௝൯௡
௜ୀଵ
௝ஷ௜

, (𝑖 = 1, 2, … , 𝑛) represents the support 

degree between 𝑎௜ and 𝑎௝, with some properties, such as: 
 

a) 𝑆𝑢𝑝൫𝑎௜, 𝑎௝൯ ∈ [0,1] 
 

b) 𝑆𝑢𝑝൫𝑎௜, 𝑎௝൯ =  𝑆𝑢𝑝(𝑎௝, 𝑎௜) 
 

c) 𝑆𝑢𝑝൫𝑎௜, 𝑎௝൯ ≥ 𝑆𝑢𝑝(𝑎௦, 𝑎௧), if ห𝑎௜ , 𝑎௝ห < |𝑎௦, 𝑎௧| 
 

Definition 3: [11] For the universal set E, an IFS is expressed as follows (3): 
 

𝐴 = ൛൫𝑥, 𝜇஺(𝑥), 𝑣஺(𝑥)൯ห𝑥 ∈ 𝐸ൟ                  (3) 
 
Noticed that 𝜇஺(𝑥) ∈ [0,1] and 𝑣஺(𝑥) ∈ [0,1] denote the positive grade and negative grade respectively with 
subject to condition: 0 ≤ 𝜇஺(𝑥) + 𝑣஺(𝑥) ≤ 1. Additionally, 𝜋஺(𝑥) = 1 −  𝜇஺(𝑥) − 𝑣஺(𝑥) is denoted the 
hesitancy value of 𝐴. Further, a pair (𝜇஺(𝑥), 𝑣஺(𝑥)) represents an intuitionistic fuzzy value. 
Definition 4: [22] For the universal set E, the C-IFS is invented by (4): 
 

𝐴 = { < 𝑥, 𝜇஺(𝑥), 𝑣஺(𝑥);  𝑟஺ > |𝑥 ∈ 𝐸}     (4) 
 
Noticed that 𝜇஺(𝑥), denotes the positive grades and 𝑣஺(𝑥), denotes the negative grades with 𝜇஺(𝑥), 𝑣஺(𝑥)  ≥
0 and 0 ≤ 𝜇஺(𝑥) + 𝑣஺(𝑥) ≤ 1, ∀𝑥 ∈ 𝐸, where r represents the radius of the point (𝜇஺(𝑥), 𝑣஺(𝑥)). 
Additionally, 𝜋஺(𝑥) = 1 − 𝜇஺(𝑥), −𝑣஺(𝑥) represents the hesitancy value of C-IFS and a triplet 𝔚 =

ቀ𝜇𝔚೔
(𝑥), 𝑣𝔚೔

(𝑥); 𝑟𝔚೔
(𝑥)ቁ is known as the circular intuitionistic fuzzy value (C-IFV). 

Definition 5: [61] The mathematical shape of score value 𝑠𝔚 and accuracy value ℎ𝔚 is invented by (5,6): 
 

𝑠𝔚 = (𝜇𝔚 − 𝑣𝔚), 𝑠𝔚 ∈ [−1,1]      (5) 
 

ℎ𝔚 = (𝜇𝔚 + 𝑣𝔚), ℎ𝔚 ∈ [0,1]      (6) 
  
For simplification, we have some rules: 
 

  If 𝑠𝔚భ
> 𝑠𝔚మ

, then 𝔚ଵ > 𝔚ଶ 
 

 If 𝑠𝔚భ
= 𝑠𝔚మ

, then: 
 

1) If ℎ𝔚భ
= ℎ𝔚మ

, then 𝔚ଵ = 𝔚ଶ 
 

2) If ℎ𝔚భ
> ℎ𝔚మ

, then 𝔚ଵ > 𝔚ଶ 
 
Definition 6: [61] Consider any two C-IFVs, 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯(𝑖 = 1,2), Then, some flexible 
operations for C-IFVs are discussed as follows (7-14): 
 

𝔚ଵ ⊕௧ 𝔚ଶ = (𝜇𝔚భ
+ 𝜇𝔚మ

− 𝜇𝔚భ
𝜇𝔚మ

,  𝑣𝔚భ
𝑣𝔚మ

, 𝑟𝔚భ
+ 𝑟𝔚మ

− 𝑟𝔚భ
𝑟𝔚మ

)    (7) 
 

𝔚ଵ ⊕௧௖ 𝔚ଶ = (𝜇𝔚భ
+ 𝜇𝔚మ

− 𝜇𝔚భ
𝜇𝔚మ

,  𝑣𝔚భ
𝑣𝔚మ

, 𝑟𝔚భ
𝑟𝔚మ

)     (8) 
 

𝔚ଵ ⊗௧ 𝔚ଶ = (𝜇𝔚భ
𝜇𝔚మ

, 𝑣𝔚భ
+ 𝑣𝔚మ

− 𝑣𝔚భ
𝑣𝔚మ

, 𝑟𝔚భ
+ 𝑟𝔚మ

− 𝑟𝔚భ
𝑟𝔚మ

)    (9) 
 

𝔚ଵ ⊗௧௖ 𝔚ଶ = (𝜇𝔚భ
𝜇𝔚మ

, 𝑣𝔚భ
+ 𝑣𝔚మ

− 𝑣𝔚భ
𝑣𝔚మ

, 𝑟𝔚భ
𝑟𝔚మ

)               (10) 
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φ𝔚ଵ೟
= (1 − (1 − 𝜇𝔚భ

)ఒ, 𝑣𝔚భ

ఒ , 1 − ൫1 − 𝑟𝔚భ
)ఒ൯, 𝜆 > 0                  (11) 

φ𝔚ଵ೟೎
= (1 − (1 − 𝜇𝔚భ

)ఒ, 𝑣𝔚భ

ఒ , 𝑟𝔚భ

ఒ ), 𝜆 > 0                (12) 

𝔚ଵ೟

ఒ = (𝜇𝔚భ

ఒ , 1 − (1 − 𝑣𝔚భ
)ఒ, 𝑟𝔚భ

ఒ ), 𝜆 > 0                (13) 
 

𝔚ଵ೟೎

ఒ = (𝜇𝔚భ

ఒ , 1 − (1 − 𝑣𝔚భ
)ఒ, 1 − ൫1 − 𝑟𝔚భ

)ఒ൯, 𝜆 > 0.0              (14) 

 
3 Power Aggregation Operators Based on C-IFSs 
 

This section includes the C-IFPWA, C-IFPWG, C-IFPOWA, and C-IFPWOG operators. We also 
derive some basic properties and special cases. 
Definition 7: Consider 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) be the collection of C-IFVs and the C-IFPWA 
operators are defined as follows (15,16): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ⨁
௜ୀଵ

௡

𝓌௜𝛼௜               (15) 
 

 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ = ⨁
௜ୀଵ

௡

𝓌௜𝛼௜               (16) 

 

Where 𝓌௜ =
𝔴೔൫ଵା𝒜(ఈ೔)൯

∑ 𝔴೔൫ଵା𝒜(ఈ೔)൯೙
೔సభ

, 𝔴 = (𝔴ଵ, 𝔴ଶ, … , 𝔴௡) be the set of weights and 𝒜(𝛼௜) =

∑ 𝔴௜𝑆𝑢𝑝൫𝛼௜, 𝛼௝൯௡
௜ୀଵ

௜ୀஷ௝

, (𝑖 = 1, 2, … , 𝑛). 

Theorem 1: To consider the information in definition 7, it can be shown that the aggregated value is also a C-
IFV, as (17,18): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ቌ

1 − ∏ (1 − 𝜇௜)𝓌೔௡
௜ୀଵ ,

 ∏ (𝑣௜)𝓌೔௡
௜ୀଵ ,

1 − ∏ (1 − 𝑟௜)𝓌೔௡
௜ୀଵ  

ቍ              (18) 

 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ = ቌ

1 − ∏ (1 − 𝜇௜)𝓌೔௡
௜ୀଵ ,

∏ (𝑣௜)𝓌೔௡
௜ୀଵ ,

∏ (𝑟௜)𝓌೔௡
௜ୀଵ  

ቍ              (19) 

 
Proof: Since 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) be a set of C-IFVs and we prove the above expression 
for 𝑛 = 2 (20-24): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ)௧ = ⨁
௜ୀଵ

ଶ
𝓌௜𝛼௜              (20) 

 
 

𝓌ଵ𝔚ଵ = (1 − (1 − 𝜇ଵ)𝓌భ , 𝑣ଵ
𝓌భ , 1 − (1 − 𝑟ଵ)𝓌భ)               (21) 

 
 

𝓌ଶ𝔚ଶ = (1 − (1 − 𝜇ଶ)𝓌మ , 𝑣ଶ
𝓌మ , 1 − (1 − 𝑟ଶ)𝓌మ)              (22) 

 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ)௧ = ⨁
௜ୀଵ

ଶ
𝓌௜𝛼௜               (23) 

 
 

𝓌ଵ𝔚ଵ ⊕௧ 𝓌ଶ𝔚ଶ = ൫1 − ∏ (1 − 𝜇௜)𝓌೔ଶ
௜ୀଵ , ∏ (𝑣௜)𝓌೔ଶ

௜ୀଵ , 1 − ∏ (1 − 𝑟௜)𝓌೔ଶ
௜ୀଵ ൯             (24) 

 
Suppose that the above expression is true for 𝑛 = 𝑘 and we have (25): 
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𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ)௧ = ⨁
௜ୀଵ

௞

𝓌௜𝛼௜ 
 

= ൫1 − ∏ (1 − 𝜇௜)𝓌೔௞
௜ୀଵ , ∏ (𝑣௜)𝓌೔௞

௜ୀଵ , 1 − ∏ (1 − 𝑟௜)𝓌೔௞
௜ୀଵ ൯              (25) 

 
Next, we have to prove 𝑛 = 𝑘 + 1 (26): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ)௧ = ⨁
௜ୀଵ

௞

𝓌௜𝛼௜⨁𝓌௞ାଵ𝛼௞ାଵ 
 

= ቆ
1 − ∏ (1 − 𝜇௜)𝓌೔௞

௜ୀଵ , ∏ (𝑣௜)𝓌೔௞
௜ୀଵ ,

 1 − ∏ (1 − 𝑟௜)𝓌೔௞
௜ୀଵ

ቇ ⨁ ൬
1 − (1 − 𝜇௞ାଵ)𝓌ೖశభ , (𝑣௞ାଵ)𝓌ೖశభ ,

 1 − (1 − 𝑟௞ାଵ)𝓌ೖశభ
൰  

 

= ቆ
1 − ∏ (1 − 𝜇௜)𝓌೔௞ାଵ

௜ୀଵ , ∏ (𝑣௜)𝓌೔௞ାଵ
௜ୀଵ ,

 1 − ∏ (1 − 𝑟௜)𝓌೔௞ାଵ
௜ୀଵ

ቇ              (26) 

 
We can also prove the remaining proof using stepwise expressions of the above proof. 
Property 1: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) be a set of C-IFVs, if 𝛼௜ = 𝛼, for all j, then (27,28): 
  

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ =  𝛼                (27) 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ =  𝛼                (28) 
 
Proof: We can prove the idempotency property as follows (29): 
 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ቌ

1 − ∏ (1 − 𝜇஀(௜))𝓌೔௡
௜ୀଵ ,

 ∏ (𝑣஀(௜))𝓌೔௡
௜ୀଵ ,

1 − ∏ (1 − 𝑟஀(௜))𝓌೔௡
௜ୀଵ  

ቍ              (29) 

 
Since each C-IFV is identical as 𝛼௜ = 𝛼, so we have (30): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ቌ

∏ (𝜇௜)𝓌೔௡
௜ୀଵ ,

 1 − ∏ (1 − 𝑣௜)𝓌೔௡
௜ୀଵ ,

∏ (𝑟௜)𝓌೔௡
௜ୀଵ  

ቍ     

 

= ൮

(𝜇)∑ 𝓌೔
೙
೔సభ ,

 1 − (1 − 𝑣)∑ 𝓌೔
೙
೔సభ ,

(𝑟)∑ 𝓌೔
೙
೔సభ  

൲ , ෍ 𝓌௜ = 1

௡

௜ୀଵ

 

 

= (𝜇, 𝑣, 𝑟)                 (30) 
 
Property 2: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
; 𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is a collection of n C-IFVs, and (𝛼ଵ
ᇱ , 𝛼ଶ

ᇱ , … , 𝛼௡
ᇱ ) be 

any permutation of (𝛼ଵ, 𝛼ଶ, … , 𝛼௡), then (31-32): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ ≤ 𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ
ᇱ , 𝔚ଶ

ᇱ , … , 𝔚௡
ᇱ )௧             (31) 

 

𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ ≤ 𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ
ᇱ , 𝔚ଶ

ᇱ , … , 𝔚௡
ᇱ )௧௖             (32) 

 
Proof: we can easily prove the above expressions. 
Property 3: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) be a set of C-IFVs, then (33-34): 
 

𝛼௠௜௡ ≤ 𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ ≤ 𝛼௠௔௫              (33) 
 

𝛼௠௜௡ ≤ 𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ ≤ 𝛼௠௔௫              (34) 
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Where 𝛼௠௜௡ = ൫𝑚𝑖𝑛௜൛𝜇ఈ೔
ൟ, 𝑚𝑎𝑥௜൛𝑣ఈ೔

ൟ൯ and 𝛼௠௔௫ = ൫𝑚𝑎𝑥௜൛𝜇ఈ೔
ൟ, 𝑚𝑖𝑛௜൛𝑣ఈ೔

ൟ൯. 
 
Proof: is analogous. 
Definition 8: Consider 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
; 𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) be the collection of C-IFVs and the C-IFPWA 
operators are defined as follows (35-36): 
 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ⨁
௜ୀଵ

௡

𝓌௜𝛼஀(௜)               (35) 
 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ = ⨁
௜ୀଵ

௡

𝓌௜𝛼஀(௜)              (36) 

 

Where 𝓌௜ =
𝔴೔൫ଵା𝒜(ఈ೔)൯

∑ 𝔴೔൫ଵା𝒜(ఈ೔)൯೙
೔సభ

, 𝔴 = (𝔴ଵ, 𝔴ଶ, … , 𝔴௡) be the set of weights and 𝒜(𝛼௜) =

∑ 𝔴௜𝑆𝑢𝑝൫𝛼௜, 𝛼௝൯௡
௜ୀଵ

௜ୀஷ௝

, (𝑖 = 1, 2, … , 𝑛). Furthermore, ൫Θ(1), Θ(2), … , Θ(𝑛)൯ be the set of permutations of 𝔚௜ 

such as Θ(𝑖) ≤ Θ(𝑖 + 1). 
Theorem 2: To consider the information in definition 8, it can be shown that the aggregated value is also a C-
IFV, as (37-38): 
 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ቌ

1 − ∏ (1 − 𝜇஀(௜))𝓌೔௡
௜ୀଵ ,

 ∏ (𝑣஀(௜))𝓌೔௡
௜ୀଵ ,

1 − ∏ (1 − 𝑟஀(௜))𝓌೔௡
௜ୀଵ  

ቍ             (37) 

 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ = ቌ

1 − ∏ (1 − 𝜇஀(௜))𝓌೔௡
௜ୀଵ ,

∏ (𝑣஀(௜))𝓌೔௡
௜ୀଵ ,

∏ (𝑟஀(௜))𝓌೔௡
௜ୀଵ  

ቍ              (38) 

 
Property 4: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
; 𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is a set of C-IFVs, if 𝛼௜ = 𝛼, for all j, then (39-40): 
  
𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ =  𝛼               (39) 

 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴 =  𝛼                (40) 
  
Property 5: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is a vector of n C-IFVs, and (𝛼ଵ
ᇱ , 𝛼ଶ

ᇱ , … , 𝛼௡
ᇱ ) be any 

permutation of (𝛼ଵ, 𝛼ଶ, … , 𝛼௡), then (41-42): 
 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ ≤ 𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ
ᇱ , 𝔚ଶ

ᇱ , … , 𝔚௡
ᇱ )௧             (41) 

 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ ≤ 𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ
ᇱ , 𝔚ଶ

ᇱ , … , 𝔚௡
ᇱ )௧௖             (42) 

 
Property 6: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
; 𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is the set of C-IFVs, then (42-43): 
 

𝛼௠௜௡ ≤ 𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ ≤ 𝛼௠௔௫             (42) 
 

𝛼௠௜௡ ≤ 𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐴(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ ≤ 𝛼௠௔௫             (43) 
 
Where 𝛼௠௜௡ = ൫𝑚𝑖𝑛௜൛𝜇ఈ೔

ൟ, 𝑚𝑎𝑥௜൛𝑣ఈ೔
ൟ൯ and 𝛼௠௔௫ = ൫𝑚𝑎𝑥௜൛𝜇ఈ೔

ൟ, 𝑚𝑖𝑛௜൛𝑣ఈ೔
ൟ൯. 

 
4 Power Geometric Aggregation Operators Based on C-IFSs 
 

In this section, we constructed a series of geometric aggregation operators for C-IFSs. 
Definition 9: Consider 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) be the collection of C-IFVs and the C-IFPWG 
operators are defined as follows (44-45): 
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𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ⨂
௜ୀଵ

௡

𝛼௜
𝓌೔               (45) 

 

𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ = ⨂
௜ୀଵ

௡

𝛼௜
𝓌೔               (45) 

 

Where 𝓌௜ =
𝔴೔൫ଵା𝒜(ఈ೔)൯

∑ 𝔴೔൫ଵା𝒜(ఈ೔)൯೙
೔సభ

, 𝔴 = (𝔴ଵ, 𝔴ଶ, … , 𝔴௡) be the set of weights and 𝒜(𝛼௜) =

∑ 𝔴௜𝑆𝑢𝑝൫𝛼௜, 𝛼௝൯௡
௜ୀଵ

௜ୀஷ௝

, (𝑖 = 1, 2, … , 𝑛). 

Theorem 3: To consider the information in definition 7, it can be shown that the aggregated value is also a                     
C-IFV, as (46-47): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ቌ

∏ (𝜇௜)𝓌೔௡
௜ୀଵ ,

 1 − ∏ (1 − 𝑣௜)𝓌೔௡
௜ୀଵ ,

∏ (𝑟௜)𝓌೔௡
௜ୀଵ  

ቍ              (46) 

 

𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ = ቌ

∏ (𝜇௜)𝓌೔௡
௜ୀଵ ,

1 − ∏ (1 − 𝑣௜)𝓌೔௡
௜ୀଵ ,

1 − ∏ (1 − 𝑟௜)𝓌೔௡
௜ୀଵ

ቍ              (47) 

 
Property 7: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is a set of C-IFVs, if 𝛼௜ = 𝛼, for all j, then (48-49): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ =  𝛼               (48) 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ =  𝛼               (49) 
 
Property 8: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is a vector of n C-IFVs, and (𝛼ଵ
ᇱ , 𝛼ଶ

ᇱ , … , 𝛼௡
ᇱ ) be any 

permutation of (𝛼ଵ, 𝛼ଶ, … , 𝛼௡), then (50-51): 
 

𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ ≤ 𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ
ᇱ , 𝔚ଶ

ᇱ , … , 𝔚௡
ᇱ )௧             (50) 

 

𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ ≤ 𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ
ᇱ , 𝔚ଶ

ᇱ , … , 𝔚௡
ᇱ )௧௖             (51) 

 
Property 9: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is the set of C-IFVs, then (52-53): 
 

𝛼௠௜௡ ≤ 𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ ≤ 𝛼௠௔௫              (52) 
 

𝛼௠௜௡ ≤ 𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ ≤ 𝛼௠௔௫              (53) 
 
Where 𝛼௠௜௡ = ൫𝑚𝑖𝑛௜൛𝜇ఈ೔

ൟ, 𝑚𝑎𝑥௜൛𝑣ఈ೔
ൟ൯ and 𝛼௠௔௫ = ൫𝑚𝑎𝑥௜൛𝜇ఈ೔

ൟ, 𝑚𝑖𝑛௜൛𝑣ఈ೔
ൟ൯. 

Definition 10: Consider 𝔚௜ = ൫𝜇𝔚೔
, 𝑣𝔚೔

;  𝑟𝔚೔
൯, (𝑖 = 1, 2, … , 𝑛) be the collection of C-IFVs and the C-IFPWG 

operators are defined as follows (54-55): 
 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ⨂
௜ୀଵ

௡

𝛼஀(௜)
𝓌೔                (54) 

 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ = ⨂
௜ୀଵ

௡

𝛼஀(௜)
𝓌೔                (55) 

 

Where 𝓌௜ =
𝔴೔൫ଵା𝒜(ఈ೔)൯

∑ 𝔴೔൫ଵା𝒜(ఈ೔)൯೙
೔సభ

, 𝔴 = (𝔴ଵ, 𝔴ଶ, … , 𝔴௡) be the set of weights and 𝒜(𝛼௜) =

∑ 𝔴௜𝑆𝑢𝑝൫𝛼௜, 𝛼௝൯௡
௜ୀଵ

௜ୀஷ௝

, (𝑖 = 1, 2, … , 𝑛). Furthermore, ൫Θ(1), Θ(2), … , Θ(𝑛)൯ be the set of permutations of 𝔚௜ 

such as Θ(𝑖) ≤ Θ(𝑖 + 1). 
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Theorem 4: To consider the information in definition 7, it can be shown that the aggregated value is also a                     
C-IFV, as (56-57): 
 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ = ቌ

∏ (𝜇஀(௜))𝓌೔௡
௜ୀଵ ,

 1 − ∏ (1 − 𝑣஀(௜))𝓌೔௡
௜ୀଵ ,

∏ (𝑟஀(௜))𝓌೔௡
௜ୀଵ  

ቍ             (56) 

 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ = ቌ

∏ (𝜇஀(௜))𝓌೔௡
௜ୀଵ ,

1 − ∏ (1 − 𝑣஀(௜))𝓌೔௡
௜ୀଵ ,

1 − ∏ (1 − 𝑟஀(௜))𝓌೔௡
௜ୀଵ

ቍ             (57) 

 
Property 10: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is a set of C-IFVs, if 𝛼௜ = 𝛼, for all j, then (58-59): 
  
𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ =  𝛼                (58) 

 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ =  𝛼                (59) 
 
Property 11: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is a vector of n C-IFVs, and (𝛼ଵ
ᇱ , 𝛼ଶ

ᇱ , … , 𝛼௡
ᇱ ) be any 

permutation of (𝛼ଵ, 𝛼ଶ, … , 𝛼௡), then (60-61): 
 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ ≤ 𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ
ᇱ , 𝔚ଶ

ᇱ , … , 𝔚௡
ᇱ )௧              (60) 

 

𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ ≤ 𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ
ᇱ , 𝔚ଶ

ᇱ , … , 𝔚௡
ᇱ )௧௖              (61) 

 
Property 12: Let 𝔚௜ = ൫𝜇𝔚೔

, 𝑣𝔚೔
;  𝑟𝔚೔

൯, (𝑖 = 1, 2, … , 𝑛) is the set of C-IFVs, then (62-63): 
 

𝛼௠௜௡ ≤ 𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧ ≤ 𝛼௠௔௫              (62) 
 

𝛼௠௜௡ ≤ 𝐶 − 𝐼𝐹𝑃𝑂𝑊𝐺(𝔚ଵ, 𝔚ଶ, … , 𝔚௡)௧௖ ≤ 𝛼௠௔௫              (63) 
 
Where 𝛼௠௜௡ = ൫𝑚𝑖𝑛௜൛𝜇ఈ೔

ൟ, 𝑚𝑎𝑥௜൛𝑣ఈ೔
ൟ൯ and 𝛼௠௔௫ = ൫𝑚𝑎𝑥௜൛𝜇ఈ೔

ൟ, 𝑚𝑖𝑛௜൛𝑣ఈ೔
ൟ൯. 

 
5 MADM Problem Based on Proposed Information 
 

In this section, we arrange the procedure of MADM techniques based on the invented techniques for 
evaluated operators to enhance the worth and stability of the proposed operators. For this, we consider a 
collection of finite alternatives 𝑋 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡} and attributes 𝐺 = {𝐺ଵ, 𝐺ଶ, … , 𝐺௠}, where 𝛩 =
(𝛩ଵ, 𝛩ଶ, … , 𝛩௡) is the weight vector where 𝛩௜ ≥ 0, 𝑖 = 1,2, … , 𝑚, and ∑ 𝛩௜

௠
௜ୀଵ = 1. Consider a circular 

intuitionistic fuzzy decision matrix A௞ = (𝑎௜௝)௠×௡ and an attribute value provided by the decision-maker 𝑒௞ 
is 𝑎௜௝ = ൫𝜇௜௝ , 𝑣௜௝; 𝑟௜௝൯, which is C-IFV, where 𝜇௜௝ is the membership degree, 𝑣௜௝ is the non-membership degree, 
𝑟௜௝ is the radius and 𝜋௜௝ is the uncertainty degree. Furthermore, we aim to evaluate the normalization of the 
data by using the below theory, if we have cost type of data, but in the case of benefit type of data we do not 
aim to normalize the data, such as (64): 

 

𝑎௜௝ = ൫𝜇௜௝ , 𝑣௜௝; 𝑟௜௝൯ = ቊ
𝑎௜௝ , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐺௜  

𝑎௜௝
௖ ,         𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐺௜

, 𝑗 = 1,2, … , 𝑛              (64) 

 
Where 𝑎௜௝

௖  is the complement of 𝑎௜௝, such that 𝑎௜௝
௖ = ൫𝑣௜௝ , 𝜇௜௝; 𝑟௜௝൯, clearly, 𝜋௜௝ = 1 − 𝜇௜௝ − 𝑣௜௝. 

Finally, we evaluate or address the above procedure, we have the following steps, such as: 
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Figure 2 Diagram for the MADM Problem. 
 
Approach I 
 

Step 1. Determine the supports based on distance measures, such as (65-66): 
 

𝑆𝑢𝑝 ൫𝑎௜௝ , 𝑎௜௞൯ = 1 − 𝑑൫𝑎௜௝ , 𝑎௜௞൯, 𝑖 = 1,2, … , 𝑛, & 𝑗, 𝑘 = 1,2, … 𝑚             (65) 
 

𝑑൫𝑎௜௝ , 𝑎௜௞൯ =
ଵ

ଶ
 ൫ห𝜇௜௝ − 𝜇௜௞ห + ห𝑣௜௝ − 𝑣௜௞ห + ห𝑟௜௝ − 𝑟௜௞ห൯, 𝑖 = 1,2, … , 𝑛, & 𝑗, 𝑘 = 1,2, … 𝑚             (66) 

 
Step 2. Compute weighted support as follows (67): 
 

𝒜(𝛼௜) =  ∑ 𝛩௜𝑆𝑢𝑝 ൫𝑎௜௝ , 𝑎௜௞൯௦
௜ୀଵ
௜ஷ௞

               (67) 

 
Step 3. Calculate the overall degree of weights 𝜉௜௝ , (𝑗 = 1,2, … , 𝑚) as follows (68): 
 

𝜉௜௝ =
௵ೕቀଵା𝒜൫ఈೕ൯ቁ

∑ ௵ೕቀଵା𝒜൫ఈೕ൯ቁ೙
ೕసభ

, 𝑖 = 1,2, … , 𝑛, & 𝑗, 𝑘 = 1,2, … 𝑚               (68) 

 
Where 𝜉௜௝ ≥ 0, 𝑗 = 1,2, … , 𝑠, 𝑎𝑛𝑑 ∑ 𝜉௜௝ = 1௦

௝ୀଵ  
Step 4.  To aggregate human opinions, we apply derived approaches of the C-IFPWA and C-IFPWG operators 
as follows (69-72): 
 

𝑋௜ = 𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝑎௜ଵ, 𝑎௜ଶ, … , 𝑎௦)௧ =

⎝

⎜
⎛

 1 −  ∏ ൫1 − 𝜇௜௝൯
క೔ೕ௦

௞ୀଵ ,

 ∏ ൫𝑣௜௝൯
క೔ೕ௦

௝ୀଵ ,

1 − ∏ ൫1 − 𝑟௜௝൯
క೔ೕ௦

௞ୀଵ ⎠

⎟
⎞

             (69) 
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𝑋௜ = 𝐶 − 𝐼𝐹𝑃𝑊𝐴(𝑎௜ଵ, 𝑎௜ଶ, … , 𝑎௦)௧௖ =

⎝

⎜
⎛

 1 −  ∏ ൫1 − 𝜇௜௝൯
క೔ೕ௦

௞ୀଵ ,

 ∏ ൫𝑣௜௝൯
క೔ೕ௦

௝ୀଵ ,

∏ ൫𝑟௜௝൯
క೔ೕ௦

௝ୀଵ ⎠

⎟
⎞

             (70) 

 

𝑋௜ = 𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝑎௜ଵ, 𝑎௜ଶ, … , 𝑎௦)௧ =

⎝

⎜
⎛

  ∏ ൫𝜇௜௝൯
క೔ೕ௦

௝ୀଵ ,

1 −  ∏ ൫1 − 𝑣௜௝൯
క೔ೕ௦

௝ୀଵ ,

∏ ൫𝑟௜௝൯
క೔ೕ௦

௝ୀଵ ⎠

⎟
⎞

             (71) 

 

𝑋௜ = 𝐶 − 𝐼𝐹𝑃𝑊𝐺(𝑎௜ଵ, 𝑎௜ଶ, … , 𝑎௦)௧௖ =

⎝

⎜
⎛

  ∏ ൫𝜇௜௝൯
క೔ೕ௦

௝ୀଵ ,

1 −  ∏ ൫1 − 𝑣௜௝൯
క೔ೕ௦

௝ୀଵ ,

1 − ∏ ൫1 − 𝑟௜௝൯
క೔ೕ௦

௝ୀଵ ⎠

⎟
⎞

             (72) 

 
Step 5.   Rank 𝑋௜ , (𝑖 = 1,2, … , 𝑛) in descending order by using the ranking method described in Definition 2. 
Step 6.   Rank all the alternatives 𝑋௜ , (𝑖 = 1,2, … , 𝑛) and select the best one following the ranking of 𝑋௜  (𝑖 =
1,2, … , 𝑛). 

Furthermore, we also elaborate stepwise decision algorithm of the MADM problem in Figure 2. Figure 2 
facilitates a comprehensive understanding of the aggregation process of expert's opinions. 
 

5.1 Analysis of Machine Learning Through Proposed Operators 
Machine learning (ML) analysis refers to the application of algorithms and statistical models to identify 

patterns, make predictions, and improve decision-making based on data. Unlike traditional programming, 
where explicit instructions are given to perform tasks, machine learning models learn autonomously by 
analysing data. ML analysis has become central to a variety of industries due to its ability to process vast 
amounts of data quickly and accurately. The primary objective of ML analysis is to allow systems to improve 
over time, enhancing their predictive accuracy and relevance in real-world applications. 

Machine learning is commonly categorized into three types: supervised, unsupervised, and reinforcement 
learning, each with unique analytical approaches. Supervised learning is used when labelled data is available, 
allowing the model to learn associations between input-output pairs. This type of analysis is widely used for 
tasks like classification and regression, such as predicting stock prices or diagnosing diseases. Unsupervised 
learning is applied to unlabelled data to uncover hidden patterns or groupings. Clustering and dimensionality 
reduction are examples, commonly used in recommendation engines and customer segmentation. 
Reinforcement learning is distinct in that it involves agents learning through interactions with their 
environment, receiving rewards or penalties. It is often applied in game theory, robotics, and autonomous 
systems. 

Several algorithms are fundamental to machine learning analysis, each suited to different types of data and 
problem domains. Linear regression and logistic regression are widely used in supervised learning for 
predicting numerical outcomes and binary classifications, respectively. Decision trees and random forests are 
used for both classification and regression tasks due to their interpretability and flexibility. Support vector 
machines (SVMs) are effective in high-dimensional spaces, making them useful for text classification and 
image recognition. In the unsupervised domain, k-means clustering and principal component analysis (PCA) 
are common methods for clustering data and reducing dimensionality, respectively. Neural networks and deep 
learning models have gained popularity for handling complex, unstructured data, such as images and audio, 
through layers of processing that mimic the human brain's structure. 

A crucial aspect of machine learning analysis is evaluating the model's performance to ensure accuracy 
and reliability. For classification tasks, metrics such as accuracy, precision, recall, and F1 score are commonly 
used to assess the model’s effectiveness. In regression tasks, mean squared error (MSE), mean absolute error 
(MAE), and R-squared are popular metrics. Cross-validation techniques, such as k-fold cross-validation, help 
in assessing the generalizability of the model by partitioning the data into training and testing subsets. Selecting 
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the right evaluation metric is essential as it influences how well the model meets its intended purpose and helps 
in comparing different models' performance accurately. 

Machine learning analysis has transformative applications across diverse industries. In healthcare, ML 
analysis is used for predictive diagnostics, drug discovery, and personalized medicine. In finance, algorithms 
analyse vast datasets to detect fraud, assess credit risk, and manage investments. Retailers use machine learning 
to enhance customer experience through personalized recommendations and demand forecasting. The 
implications of these applications are profound, as ML analysis can optimize resources, reduce operational 
costs, and provide insights that were previously inaccessible. However, the ethical and social implications—
such as data privacy, algorithmic bias, and transparency—are growing concerns that need to be addressed to 
ensure responsible AI usage. 

Despite its rapid advancements, machine learning analysis faces several challenges. Data quality and 
availability can significantly impact model performance, as models trained on biased or insufficient data may 
yield inaccurate predictions. The complexity of some ML models, especially deep learning networks, creates 
a lack of interpretability, making it difficult to understand how decisions are made. This is a critical issue in 
fields like healthcare and finance, where accountability is essential. Looking forward, research into explainable 
AI (XAI) aims to make ML models more transparent and interpretable. Additionally, federated learning and 
privacy-preserving techniques are emerging to address privacy concerns by allowing decentralized model 
training on sensitive data. The future of machine learning analysis lies in building more ethical, interpretable, 
and adaptable models to tackle increasingly complex problems. 

In this section, we evaluate the problem of machine learning through invented operators. For this, we 
consider four kinds of machine learning, such as Ⱥଵ: Supervised Learning, Ⱥଶ: Unsupervised Learning, Ⱥଷ: 
Semi-supervised Learning, Ⱥସ: Self- supervised Learning. To select the best one, we have the following 
criteria, such as network impact 𝑎ଵ, growth analysis 𝑎ଶ, stock exchange impact 𝑎ଷ, environmental impact 𝑎ସ, 
and the ratio of expert people in computers  5. Therefore, we utilize the C-IFPWA (or C-IFPWG) operator to 
develop an approach to multiple attribute group decision-making with circular intuitionistic fuzzy information, 
see Table 1, which involves the following steps: 

 
Table 1. C-IF decision matrix. 

 

 Ⱥ𝟏 Ⱥ𝟐 Ⱥ𝟑 Ⱥ𝟒 
𝒂𝟏 (0.5, 0.5; 0.9) (0.8, 0.2; 0.1) (0.8, 0.2; 0.6) (0.5, 0.5; 0.2) 
𝒂𝟐 (0.3, 0.7; 0.8) (0.6, 0.4; 0.5) (0.7, 0.3; 0.4) (0.6, 0.4; 0.5) 
𝒂𝟑 (0.4, 0.6; 0.7) (0.7, 0.3; 0.3) (0.4, 0.6; 0.2) (0.9, 0.1; 0.4) 
𝒂𝟒 (0.2, 0.8; 0.5) (0.1, 0.9; 0.2) (0.5, 0.5; 0.3) (0.8, 0.2; 0.1) 
𝒂𝟓 (0.9, 0.1; 0.1) (0.5, 0.5; 0.3) (0.9, 0.1; 0.9) (0.7, 0.3; 0.8) 

 
Approach I 
 

Step 1. Calculate the supports, see Table 2. 
 

Table 2. C-IF distance matrix. 
 

 Ⱥ𝟏 Ⱥ𝟐 Ⱥ𝟑 Ⱥ𝟒 
d(𝒂𝟏, 𝒂𝟐) 0.25 0.4 0.2 0.25 

d(𝒂𝟏, 𝒂𝟑) 0.2 0.2 0.6 0.5 
d(𝒂𝟏, 𝒂𝟒) 0.5 0.75 0.45 0.35 
d(𝒂𝟏, 𝒂𝟓) 0.8 0.4 0.25 0.5 
d(𝒂𝟐, 𝒂𝟑) 0.15 0.2 0.4 0.35 

d(𝒂𝟐, 𝒂𝟒) 0.25 0.65 0.25 0.4 
d(𝒂𝟐, 𝒂𝟓) 0.95 0.2 0.45 0.25 
d(𝒂𝟑, 𝒂𝟒) 0.3 0.65 0.15 0.25 

d(𝒂𝟑, 𝒂𝟓) 0.8 0.2 0.85 0.4 
d(𝒂𝟒, 𝒂𝟓) 0.9 0.45 0.7 0.45 
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Furthermore, with the help of data in Table 2, the support matrix is listed in Table 3. 
 

Table 3. C-IF support matrix. 
 

 Ⱥ𝟏 Ⱥ𝟐 Ⱥ𝟑 Ⱥ𝟒 
𝑺𝒖𝒑(𝒂𝟏, 𝒂𝟐) 0.75 0.6 0.8 0.75 
𝑺𝒖𝒑(𝒂𝟏, 𝒂𝟑) 0.8 0.8 0.4 0.5 
𝑺𝒖𝒑(𝒂𝟏, 𝒂𝟒) 0.5 0.25 0.55 0.65 
𝑺𝒖𝒑(𝒂𝟏, 𝒂𝟓) 0.2 0.6 0.75 0.5 
𝑺𝒖𝒑(𝒂𝟐, 𝒂𝟑) 0.85 0.8 0.6 0.65 
𝑺𝒖𝒑(𝒂𝟐, 𝒂𝟒) 0.75 0.35 0.75 0.6 
𝑺𝒖𝒑(𝒂𝟐, 𝒂𝟓) 0.05 0.8 0.55 0.75 
𝑺𝒖𝒑(𝒂𝟑, 𝒂𝟒) 0.7 0.35 0.85 0.75 
𝑺𝒖𝒑(𝒂𝟑, 𝒂𝟓) 0.2 0.8 0.15 0.6 
𝑺𝒖𝒑(𝒂𝟒, 𝒂𝟓) 0.1 0.55 0.3 0.55 

 
Step 2.  Utilize the weight 𝜉௜௝ , (𝑗 = 1,2, … , 𝑠) of the decision-maker to calculate the weighted support 𝑎௜௝ of 
the C-IFV, and calculate the weights 𝜉௜௝ , (𝑗 = 1,2, … , 𝑚) associated with the C-IFVs 𝑎௜௝ , (𝑗 = 1,2, … , 𝑠), 
where 𝜉௜௝ ≥ 0, 𝑗 = 1,2, … , 𝑠, 𝑎𝑛𝑑 ∑ 𝜉௜௝ = 1௦

௝ୀଵ , see Table 4 and Table 5. 
 

Table 4. C-IF weighted matrix. 
 

 Ⱥ𝟏 Ⱥ𝟐 Ⱥ𝟑 Ⱥ𝟒 
𝒜(𝒂𝟏) 2.25 2.25 2.5 2.4 
𝒜(𝒂𝟐) 2.4 2.55 2.7 2.75 
𝒜(𝒂𝟑) 2.55 2.75 2 2.5 
𝒜(𝒂𝟒) 2.05 1.5 2.45 2.55 
𝒜(𝒂𝟓) 0.55 2.75 1.75 2.4 

 

Table 5. C-IF weighted matrix with support grades. 
 

𝝃𝒊𝒋 Ⱥ𝟏 Ⱥ𝟐 Ⱥ𝟑 Ⱥ𝟒 
T(𝝃𝟏) 0.219595 0.193452 0.213415 0.193182 

T(𝝃𝟐) 0.22973 0.21131 0.22561 0.213068 

T(𝝃𝟑) 0.239865 0.223214 0.182927 0.198864 

T(𝝃𝟒) 0.206081 0.14881 0.210366 0.201705 

T(𝝃𝟓) 0.10473 0.223214 0.167683 0.193182 

 
Step 3.  Utilize the C-IFPWA operator and C-IFPWG operator for t-norm and t-conorm, see Table 6. 
 

Table 6. C-IF aggregated matrix. 
 

 Ⱥ𝟏 Ⱥ𝟐 Ⱥ𝟑 Ⱥ𝟒 
C-

IFPW𝑨𝒕 
(0.474715, 
0.525285, 
0.732341) 

(0.610975, 
0.389025, 
0.301826) 

(0.710752, 
0.289248, 
0.556365) 

(0.739266, 
0.260734, 
0.464495) 
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 Ⱥ𝟏 Ⱥ𝟐 Ⱥ𝟑 Ⱥ𝟒 
C-

IFPW𝑨𝒕𝒄 
(0.474715, 
0.525285, 
0.580452) 

(0.610975, 
0.389025, 
0.254388) 

(0.710752, 
0.289248, 
0.630966) 

(0.739266, 
0.260734, 
0.317153) 

C-
IFPW𝑮𝒕 

(0.371096, 
0.628904, 
0.580452) 

(0.482829, 
0.517171, 
0.254388) 

(0.631797, 
0.368203, 
0.630966) 

(0.685499, 
0.314501, 
0.317153) 

C-
IFPW𝑮𝒕𝒄 

(0.371096, 
0.628904, 
0.732341) 

(0.482829, 
0.517171, 
0.301826) 

(0.631797, 
0.368203, 
0.556365) 

(0.685499, 
0.314501, 
0.464495) 

 
Step 5.   Rank Ⱥ௝ (𝑗 = 1,2, … , 𝑛) in descending order by using the ranking method described in Definition 2, 
see Table 7. 

Table 7. C-IF score values information. 
 

 𝒔𝜶𝒕
 𝒔𝜶𝒕𝒄

 𝒔𝜶𝒕
 𝒔𝜶𝒕𝒄

 
Ⱥ𝟏 -0.0370 0.0670 0.2345 0.2223 
Ⱥ𝟐 -0.0294 0.0565 0.2660 0.1518 
Ⱥ𝟑 -0.1497 -0.0087 0.1663 0.1177 
Ⱥ𝟒 -0.1888 -0.0104 0.1467 0.1723 

 
Step 6.   Rank all the alternatives Ⱥ௝(𝑗 = 1,2, … , 𝑛) and select the best one following the ranking of Ⱥ௝  (𝑗 =

1,2, … , 𝑛), see Table 8.  
Table 8. C-IF ranking matrix. 

 

Methods Ranking values 
C-IFPW𝑨𝒕 Ⱥଶ > Ⱥଵ > Ⱥଷ > Ⱥସ 
C-IFPW𝑨𝒕𝒄 Ⱥଵ > Ⱥଶ > Ⱥଷ > Ⱥସ 
C-IFPW𝑮𝒕 Ⱥଶ > Ⱥଵ > Ⱥଷ > Ⱥସ 
C-IFPW𝑮𝒕𝒄 Ⱥଵ > Ⱥସ > Ⱥଶ > Ⱥଷ 

 
The most valuable decision is Ⱥଶ according to the theory of C-IFPWA and C-IFPWG operators with t-norm, 
but according to the theory of C-IFPWA and C-IFPWG operators with t-conorm, we obtain the best decision 
is Ⱥଵ. 
 
6 Comparative Study 
 

In this section, we compare the derived techniques or methods with various old or existing methods based 
on the data in Table 1. For this, we needed to select some prevailing operators based on IFSs and circular IFSs, 
then in the presence of the information in Table 1, we discussed their ranking results in Table 9. For this, we 
have the following existing techniques, such as simple average operator (AVO) for IFST was exposed by Xu 
[34]. Moreover, the geometric operator (GEO) for IFST was exposed by Xu and Yager [62]. In 2018, Jiang et 
al. [36] derived the power AVO and power GEO for IFST. Garg [63] developed Einstein AVO and GEO for 
the decision analysis process. Jana and Pal [64] proposed picture fuzzy AVO and GEO using operations of 
Dombi t-norms and t-conorms. Al-Quran [65] modified the theory of t-spherical hesitant fuzzy information 
and decision analysis process. Hence the comparative analysis is listed in Table 9 in the consideration of the 
data in Table 1. 

The most valuable decision is Ⱥ𝟐 according to the theory of C-IFPWA and C-IFPWG operators with t-
norm, but according to the theory of C-IFPWA and C-IFPWG operators with t-conorm, we obtain the best 
decision is Ⱥ𝟏. Anyhow, some existing techniques are working accurately because of limitations and vagueness 
due to their structure. Hence, the proposed operators based on C-IFS are novel and no one can derive them. 
Therefore, the derived operators are superior to existing techniques. 
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Table 9. Comparative analysis of the proposed and existing techniques. 
 

Methods Score values Ranking values 
Xu [34] − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − 
Xu and Yager [62] − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − 
Jiang et al. [36] − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − 
Garg [63] − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − 
Jana and Pal [64] − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − 
Al-Quran [65] − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − − − −𝑏𝑜𝑢𝑛𝑑𝑒𝑑 − − − 
C-IFPW𝑨𝒕 −0.037, −0.09, −0.14, −0.18 Ⱥଶ > Ⱥଵ > Ⱥଷ > Ⱥସ 
C-IFPW𝑨𝒕𝒄 0.066, 0.056, −0.008, −0.010 Ⱥଵ > Ⱥଶ > Ⱥଷ > Ⱥସ 
C-IFPW𝑮𝒕 0.23, 0.26, 0.16, 0.14 Ⱥଶ > Ⱥଵ > Ⱥଷ > Ⱥସ 
C-IFPW𝑮𝒕𝒄 0.22, 0.15, 0.11, 0.17 Ⱥଵ > Ⱥସ > Ⱥଶ > Ⱥଷ 

 
7 Conclusion 
 

The decision analysis process is used to investigate suitable optimal options under various characteristics 
or attribute information about human opinions. Although, various research scholars developed many 
mathematical approaches and decision-making methods using different fuzzy domains of FSs and IFSs. 
Sometimes decisions are unable to address incomplete and uncertain information due to the restricted and 
limited structure of discussed mathematical models. The aims of this article are characterised as follows:   

1) Some flexible operations are formulated under the system of C-IFSs. 
2) We derived power aggregation operators of the C-IFPWA, C-IFPWOA, C-IFPWG, and C-IFPWOG 

operators with some prominent properties.  
3) We evaluated the procedure of the MADM technique for resolving the utilization of the most suitable 

part of machine learning in complicated scenarios.  
4) We illustrated some numerical examples for addressing the comparison between proposed techniques 

and existing methods to show the effectiveness and reliability of the presented operators. 
5) A comparative study presented a contrasting technique for comparing the results of existing 

approaches with pioneered mathematical approaches. 

In the coming future, we aim to evaluate the power operators for circular pythagorean fuzzy sets, circular 
q-rung orthopair fuzzy sets, and their extensions. Moreover, we can also apply the derived approaches of this 
article to get flexible solutions from complicated real-life applications and numerical examples. Additionally, 
we will prove their supremacy with the help of some applications discussed in artificial intelligence, neural 
networks, machine learning, and game theory. 
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