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ordered averaging (C-IFPWOA) operator, C-IF power weighted
geometric (C-IFPWG) operator, and C-IF power weighted
ordered geometric (C-IFPWOG) operator. Some properties of the
above information are also stated. Additionally, we evaluate the
procedure of the multi-attribute decision-making (MADM)
technique for resolving the utilization of the most suitable part of
machine learning in complicated scenarios. Finally, we illustrate
some numerical examples for addressing the comparison between
proposed techniques and existing methods to show the
effectiveness and reliability of the presented operators.

1 Introduction

Machine learning algorithms and machine language are two different techniques that are the subpart of
artificial intelligence that concentrate on the occurrence or development of algorithms and techniques that
enable machines to learn from decisions and predictions. These algorithms are very reliable, and many scholars
have employed them in many fields in the consideration of classical set theory. Because of these reasons,
experts have faced a lot of problems due to limited opinions. To enhance or modify the range of the decision,
Zadeh [1] exposed the fuzzy set theory (FST), where FST has only one function, called truth or positive or
membership grade such as: u,: X — [0,1], where p,(x) € [0,1]. Some applications of the Zadeh’s principle
are stated, for instance, extended form of fuzzy sets, called fuzzy superior Mandelbrot set [2], PROMETHEE
techniques [3], (a,b)-fuzzy soft sets [4], fuzzy N-soft sets (FNSSs) [5], multi-fuzzy N-soft sets [6], fuzzy
parameterized soft sets [7], fuzzy systems [8], multi-person decision-making techniques [9], and fuzzy decision
support systems [10].

FST is very strong and effective because FST has only to cope with those problems that cover the one-
dimension problems, but in many cases, we face negative information about people, things, and objects. To
cope with this kind of situation, Atanassov [11], [12], [13] explored the intuitionistic FST (IFST), where IFST
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talked about the positive and negative grades with the characteristic that the sum of the pair will be contained
in a unit interval. IFST has two different grades with the same domain and range, where the FST and classical
set theory are the special cases of the IFST. Many scholars have utilized the IFST in many fields, for instance,
similarity measures with application in emergency management and pattern recognition [14], 3D distance
measures and their application in decision-making problems [15], analysis of multi-objective decision-making
techniques [16], generalized similarity operators [17], distance and similarity measures [18], analysis and
classification of parametric divergence measures [19], fairly operators and additive ratio assessments [20], and
analysis of time-series based on higher order with IFST [21].

Most scholars accept the structure of IFST because it contains positive and negative grades, but during the
analysis of rain, we have three possibilities, for instance, to give his opinion in favor of rain, to give his opinion
against rain, and one of the most opinion, called the angle of the rain, because the angle is very important.
After all, if we know the angle of the rain before starting, we will save ourselves. Therefore, to handle such
kind of problems, the circular-IFS (C-IFS) was invented by Atanassov [22]. Many applications have been
discussed as follows, for instance, analysis of four distance measures [23], divergence measures [24], TOPSIS
techniques [25], interval-valued C-IFSs [26] TOPSIS method [27], decision-making approaches [28], AHP
techniques [29], involved distance measures [30], AHP techniques means that analytical hierarchy process
[31], and advanced approach and decision-making techniques for C-IFSs [32].

Aggregating the collection of information into a singleton set is very complicated and vague because it is
a very challenging task for scholars. Additionally, Yager [33] also invented the power aggregation operators
for classical set theory, which is a suitable and dominant technique for depicting awkward and vague data.
Furthermore, the simple average operator (AVO) for IFST was exposed by Xu [34]. Moreover, the geometric
operator (GEO) for IFST was exposed by Xu and Yager [35]. In 2018, Jiang et al. [36] derived the power AVO
and power GEO for IFST. Hussain et al. [37] designed innovative approaches for Aczel Alsina operators for
handling uncertain information of human opinions. Hussain et al. [38] demonstrated the characteristics of
different solar panels to investigate the best optimal option under considering different features. Hussain et al.
[39] modified the theory of complex picture fuzzy information to select a suitable supplier with decision
analysis processes. Hussain et al. [40] put forward the concepts of Hernonian mean operators using Aczel
Alsina operations. Hussain et al. [41] presented a robust selection process to evaluate different recycling
techniques using Dombi Bonferroni Mean operators and a decision analysis process. Hussain et al. [42]
proposed AOs of Sugeno-Weber t-norms considering an intuitionistic fuzzy system. Hussain et al. [43]
developed an intelligent decision-making model using Frank AOs and complex picture fuzzy theory. Wang et
al. [44] presented mathematical terminologies of Sugeno-Weber t-norms based on g-rung orthopair fuzzy
domains. Hussain et al. [45] utilized various properties of Hamy mean models to define correction among input
data. Ali et al. [46] enhanced various characteristics of Fermatean fuzzy theory and deduced new algebraic
AOs for aggregating human opinions. Abed Alhaleem and Ahmad [47] demonstrated new approaches to
intuitionistic fuzzy domains.

Ulugay and Okumus [48] enhanced the dealing capacity of an intuitionistic trapezoidal fuzzy theory and
also investigated a sustainable tourism industry. Imran et al. [49] designed some robust mathematical
approaches to Aczel Alsina AOs and Bonferroni Mean models. Sahoo et al. [50] introduced a robust binary-
coded genetic algorithm to investigate suitable supply chain enterprises. Asif et al. [S1] constructed AOs of
Hamacher t-norms under considering the theory of pythagorean fuzzy environment. Mishra et al. [52] applied
a novel approach of an interval-valued intuitionistic fuzzy domain and distance measures to examine
sustainable wastewater sources. Hussain and Ullah [53] put forward the concept of an advanced decision
analysis process and Sugeno-Weber mathematical approaches. Ahmmad [54] classified some reliable energy
sources using properties of entropy measures and g-rung orthopair fuzzy situations. Ali [55] discussed
innovative approaches to power interaction AOs under consideration complex IFSs. Mahmood et al. [56]
deduced robust mathematical approaches and decision analysis processes to resolve an application related to
medical diagnosis.

Hussain and Pamucar [57] constructed an intelligent decision-making model and AOs of Schweizer-Sklar
t-norms based on pythagorean fuzzy information. Ahn et al. [58] applied the theory of an interval-valued IFS
to find an authentic solution for medical diagnosis. Bibi and Ali [59] designed a dominant structure of Aczel
Alsina AOs and decision-making methodologies. Hussain et al. [60] developed Dombi AOs based on the
interval-valued spherical fuzzy framework.



M. Rukhsar et al.: Analysis of power aggregation operators... 143

1.1 Motivation Behind the Research Work

The CIFSs are an advancement in FS theory designed to enhance flexibility and precision in handling
uncertainty. Traditional FSs allow for degrees of membership and non-membership to represent uncertainty,
while IFSs add a third parameter, the hesitation margin, to address instances where there is insufficient
information. C-IFSs, however, go a step further by integrating a circular representation of membership, non-
membership, and hesitation, offering a more nuanced and visual representation of these values. This circular
model allows better representation of complex data structures where relationships are non-linear or cyclical.
The primary motivation for C-IFSs is to improve decision-making processes, especially in fields where data
ambiguity and cyclical relationships are common, such as economics, environmental sciences, and social
sciences. By allowing analysts to capture more detailed uncertainties, C-IFSs can lead to more accurate and
context-sensitive decision outcomes.

Power aggregation operators are developed to address limitations in traditional aggregation methods,
particularly when dealing with highly diverse data or data that includes outliers. Traditional operators, like
arithmetic means or weighted averages, may underperform or lead to biased results in cases where some values
in the dataset significantly differ from others. Power aggregation operators mitigate this by incorporating
exponential functions, allowing for more control over how individual data points influence the overall
aggregation. These operators are particularly useful in applications like risk assessment and financial analysis,
where extreme values or non-linear relationships are prevalent. The motivation behind power aggregation
operators is to enhance the robustness and adaptability of aggregation methods, making them better suited for
decision-making under uncertainty. By adjusting the power parameter, these operators can emphasize or
downplay specific values, resulting in more reliable outcomes and allowing for fine-tuned analysis.
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Figure 1. Shows the section-wise structure of the manuscript.

Decision-making approaches for machine learning operators are motivated by the need for reliable,
interpretable, and effective ways to implement ML models in real-world scenarios. Machine learning models
often operate as "black boxes," which limits transparency and interpretability. This is especially challenging
in high-stakes decision environments, like healthcare, finance, and autonomous driving, where the rationale
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behind a model's output is crucial. Decision-making approaches are designed to address this by providing
frameworks or operators that enhance the model's interpretability and explainability, improving trust and
accountability. Furthermore, decision-making approaches tailored for ML can also optimize model selection,
tuning, and integration with broader decision systems. In addition, these approaches facilitate alignment with
ethical standards and regulatory compliance, making machine-learning applications more suitable for use in
sensitive or high-impact fields. By grounding machine learning operations in systematic decision-making
methods, these approaches aim to make the use of ML models both safer and more effective in supporting
complex human decisions.

In the above discussion, we noticed that the theory of C-IFS is novel, and no one can derive a lot of
operators based on C-IFS, the selected operators, called power operators, were not invented by anyone.
Therefore, our main contribution is listed below:

1) Expose an innovative theory of C-IFSs for handling uncertain information of expert opinions.

2) To explore the C-IFPWA operator, C-IFPWOA operator, C-IFPWG operator, and C-IFPWOG

operator.

3) To derive the three basic properties of the above information.

4) To evaluate the procedure of the MADM technique for resolving the utilization of the most suitable

part of machine learning in complicated scenarios.

5) To illustrate some numerical examples for addressing the comparison between proposed techniques

and existing methods to show the effectiveness and reliability of the presented operators.

This manuscript is arranged in shape: In Section 2, we revised the idea of PA operator, PG operator, C-
IFS, and their operational laws. In Section 3, we explored the C-IFPWA operator, C-IFPWOA operator. In
section 4, we also constructed a series of geometric AOs such as C-IFPWG operator, and C-IFPWOG operator.
Some properties of the above information are also stated. In Section 5, we evaluated the procedure of the
MADM technique for resolving the utilization of the most suitable part of machine learning in complicated
scenarios. In Section 6, we illustrated some numerical examples for addressing the comparison between
proposed techniques and existing methods to show the effectiveness and reliability of the presented operators.
Some concluding remarks are stated in Section 7. Figure 1 depicts the section-wise organization of this article.

2 Preliminaries

In this section, we revised the idea of PA operator, PG operator, C-IFS, and their operational laws.
Definition 1: [33] For any finite family of positive integers a;, (i = 1,2, ...,n). The PA operator is invented

by (1):

_ n (1+c/l(ai)) ]
PA (all az, ..., an) - i=1 Z?:l(l""ﬂ(ai)) 4

(D

1+cﬁl(ai) .
m and A(a;) = %i Supp(a;, ocj) ,(i=1,2,...,n) represents the support

degree between a; and a;, with some properties, such as:

Noticed that Where

a) Sup(al-,aj) € [0,1]
b) Sup(al-,aj) = Sup(aj, a;)
c) Sup(al-,aj) > Sup(ag, at), if|ai,aj| < lag, a;|

Definition 2: [33] For any finite family of positive integers a;(i = 1,2, ...,n). The PG operator is invented by

Q):

(1+A(ai))

n Zlrl:1(1+"‘l(‘7‘i))

PG(ay,az, ...,an) = it q; @
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Noticed that Where (1 ACap) and A(a;) = Yy Sup(ai, aj) ,(i=1,2,...,n) represents the support

E?:l(l'h'q(ai)) j#i

degree between a; and a;, with some properties, such as:
a) Sup(al-,aj) € [0,1]

b) Sup(al-,aj) = Sup(aj, a;)

c) Sup(al-,aj) > Sup(ag, at), if|ai,aj| < lag, a;|
Definition 3: [11] For the universal set E, an IFS is expressed as follows (3):

A= {(x, ﬂA(x):vA(x))lx € E} 3)

Noticed that u,(x) € [0,1] and v4(x) € [0,1] denote the positive grade and negative grade respectively with
subject to condition: 0 < p,(x) + v,4(x) < 1. Additionally, my(x) =1 — pu(x) — v4(x) is denoted the
hesitancy value of A. Further, a pair (u,4(x), v4(x)) represents an intuitionistic fuzzy value.

Definition 4: [22] For the universal set E, the C-IFS is invented by (4):

A= {< x,uA(x),vA(x); Ta > |x € E} (4)

Noticed that 4 (x), denotes the positive grades and v4(x), denotes the negative grades with p,(x), v4(x) =
0 and 0 < py(x) +v,(x) <1, Vx € E, where r represents the radius of the point (uy(x),v,(x)).
Additionally, ma(x) =1 — pu(x), —v4(x) represents the hesitancy value of C-IFS and a triplet W =

(um (), vy, (x); T, (x)) is known as the circular intuitionistic fuzzy value (C-IFV).
Definition 5: [61] The mathematical shape of score value sqz and accuracy value hgy is invented by (5,6):

sy = (M — vap), S € [—1,1] (%)
ho = (ug + vap), hay € [0,1] (6)
For simplification, we have some rules:
o If sy, > sy, then W; > W,
o Ifsgy, = sy, then:
1) If hyy, = hgg,, then W; = W,
2) 1If hgy, > hgg,, then W, > W,

Definition 6: [61] Consider any two C-IFVs, I3; = (,uqmi, Vyp;; rqmi)(i = 1,2), Then, some flexible
operations for C-IFVs are discussed as follows (7-14):

Wy D W, = (ugs, + U, — K, Kas,» Vs, Vas,» T, + Tas, — Tap, s, ) (7
Wy D W, = (uUgp, + M, — U, s, Vs, Vs, Tas, Tas,) )
Wy Q¢ Wy, = (U, Ua,» Vs, + Vs, — Vg, Vi, T, + T, — T, Tam,) ©

Wy Q¢ Wy = (Ugp, Uas,, Ve, T+ Vap, — Vi, Vas,» Tas, s, ) (10)
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OB;, = (1 — (1 —pp) v, 1— (1 -1, )*),2> 0 (1)
oW, =1-(1- 'u%l)/'l’ v;ﬁl,rﬁh),l >0 (12)
ﬂB%t = (,Ug%gl, 1-(1- U%I)l, rﬂ%J’A >0 (13)
ﬂB%{rc = (ﬂQABI, 1-(1- vﬂBl)Aa 1- (1 - Tsml)l),l > 0.0 (14)

3 Power Aggregation Operators Based on C-IFSs

This section includes the C-IFPWA, C-IFPWG, C-IFPOWA, and C-IFPWOG operators. We also
derive some basic properties and special cases.
Definition 7: Consider I; = (uﬂ;i, 20 Tgmi), (i =1,2,...,n) be the collection of C-IFVs and the C-IFPWA
operators are defined as follows (15,16):

n
C — IFPWA(3,,23,, ..., W,), = EBlwl-ai (15)
=
n
C — IFPWA(WB,, B, ..., W) = ,691wiai (16)
1=

w;(1+A(a;))
Z?zlmi(lhﬂ(ai)) ’
Yo miSup(ai,aj),(i =1,2,..,n).

i=#j
Theorem 1: To consider the information in definition 7, it can be shown that the aggregated value is also a C-
IFV, as (17,18):

Where wy; = w=(w,,w,,..,m,) be the set of weights and A(a;)=

1- ?=1(1 - ﬂi)wi ’
C_IFPWA(QBl,%Z,...,%n)t = ?=1(vi)wi, (18)
1= I, (1 - )™

1- ?=1(1 - ﬂi)wi ’
C_IFPWA(QB]J%Z'"'!%TL)tC = ?=1(vi)wi, (19)

()@

Proof: Since I3; = (uﬂ;i, Uy, Tgmi), (i=1,2,...,n) be a set of C-IFVs and we prove the above expression
for n = 2 (20-24):

2
C — IFPWA(23,,93,), = ,691wial- (20)
=
w Wy = (1= (1—py)™r, v, 1— (1 —r)*1) €2y
w, B, = (1= (1= )20, 2,1 = (1 —1)"2) (22)
2
C — IFPWA(2B,,93,), = ,691wial- (23)
=
w1 By B w0, W, = (1= [T, (1= )™, [T ()™, 1= [T, (1 = 1) ™7) (24)

Suppose that the above expression is true for n = k and we have (25):
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k
C - IFPWA(%l,SIBz)t == _@w,:a’i
=1
= (1 -TT5. (1 = p)™e, [T, (w) ™1, 1 = T, (1 — ) ™) (25)

Next, we have to proven = k + 1 (26):

k
C —IFPWA(W, ;) = ,@1’Wiai@wk+1ak+1
i=
_(1- T (1 = p) ™, T ()™, D (1 = (1 = pgeq) k2, (Vk+1)wk+1:)
1-[1,(1 —r)™ 1= (1 = 1qq) k2

< - @ - w)™, Hk“(vl)w‘>

1— Hk+1(1 — 7 )wl (26)

We can also prove the remaining proof using stepwise expressions of the above proof.

Property 1: Let W; = (um, 20 rm.), (i=1,2,...,n) be aset of C-IFVs, if @; = @, for all j, then (27,28):

C_IFPWA(SIBl,%Z,...,%n)t = a (27)
C — IFPWA(2B,,3B,, ..., W), = (28)

Proof: We can prove the idempotency property as follows (29):

1 =TI, (A — pea))™t,
C — IFPOWA(W;, W,, ..., W), = [Ti21 (o)™, (29)
11— (1 - To@))™!

Since each C-IFV is identical as a; = a, so we have (30):

n wi
i=1 ()™,
C_[FPWG(SIBl,SIBz, ...,SIBn)t - 1-— ?:1(1_Ui)wl,
=)™
(W)=,
= 1_(1_1;)ZL 1Wi Zwl—l
(r)E e
= (uv,1) (30)

Property 2: Let 13; = (um, 1200 rm.), (i =1,2,...,n) is a collection of n C-IFVs, and (a1, @3, ..., @) be
any permutation of (a4, @y, ..., ay), then (31-32):

C — IFPWA(TB,, B, ..., W) < C — IFPWA(T,, W), ..., W), 31)
C — IFPWA(TB,, B, ..., W) e < C — IFPWA(TB,, WY, ..., W) e (32)

Proof: we can easily prove the above expressions.
Property 3: Let ®; = (g, van;; Tm;), (i = 1,2,...,n) be a set of C-IFVs, then (33-34):

Amin < C — IFPWA(D,, By, ..., B, < Tmax (33)
Amin < C — IFPWA(D1, BB, ..., B e < Tmax (34)
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Where o, = (mini{,uai}, maxi{vai}) and a g, = (maxi{,uai}, mini{vai}).

Proof: is analogous.
Definition 8: Consider 1; = (uﬂ;i, 20 rm.), (i =1,2,...,n) be the collection of C-IFVs and the C-IFPWA
operators are defined as follows (35-36):

n
C = IFPOWA(TB,, By, .., W), = D widte(y 35)
1=
n
C = IFPOWA(TB, By, .., By)ee = B wito(i (36)
1=

Z?zlmi(lhﬂ(ai)) !

Yo miSup(ai, aj) ,(i =1,2,...,n). Furthermore, (G)(l), 0(2), ..., @(n)) be the set of permutations of UB;
i=#j

suchas O(i) < O + 1).

Theorem 2: To consider the information in definition 8, it can be shown that the aggregated value is also a C-

IFV, as (37-38):

Where w; = w=(w,,w,,..,m,) be the set of weights and A(a;)=

1-TIL (A — pey)) ™,
C — IFPOWA(,, W5, ..., W), = [T 1 (o)™, (37)
1-II (A —re@)™!
11— (1 = pe) ™,
C — IFPOWA(B;, W,, ..., W) e = [T (o)™, (38)
[Tie1(re@) ™!

Property 4: Let W3; = (um, Vg5 rm.), (i=1,2,..,n)isaset of C-IFVs, if @; = a, for all j, then (39-40):

C_IFPOWA(SIBl,%Z,...,%n)t = a (39)
C—IFPOWA = «a (40)

Property 5: Let 1; = (uﬂ;i, Va3 Tgmi), (i=1,2,...,n) is a vector of n C-IFVs, and (a1, a3, ..., @) be any
permutation of (a4, @y, ..., &), then (41-42):
C — IFPOWA(W,, W, ..., B,,),; < C — IFPOWAD,, W), ..., W), A1)
C — IFPOWA(IB,, Wy, ..., W) e < C — IFPOWA(TB,, W), ..., W) e (42)

Property 6: Let B; = (ug,, van;; ™, ), (i = 1,2, ...,n) is the set of C-IF Vs, then (42-43):

Amin < C —IFPOWA(D31, W5, ..., W) ¢ < Anax (42)
Amin < C —IFPOWA(D31, 25, ..., W) te < Umax (43)

Where o, = (mini{,uai}, maxi{vai}) and aq, = (maxi{,uai}, mini{vai}).

4 Power Geometric Aggregation Operators Based on C-IFSs

In this section, we constructed a series of geometric aggregation operators for C-IFSs.
Definition 9: Consider W; = (,u%i, Vyp;; rgBi), (i =1,2,...,n) be the collection of C-IFVs and the C-IFPWG
operators are defined as follows (44-45):
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n
C — IFPWG (W, W5, ..., W), = ,®1a§” i (45)
=
n
C — IFPWG(W;, Wy, ..., W) ¢e = .®1“Z”" (45)
L=

w;(1+A(a;))
Z?zlmi(lhﬂ(ai)) ’
Yo miSup(ai,aj),(i =1,2,..,n).

i=#j
Theorem 3: To consider the information in definition 7, it can be shown that the aggregated value is also a
C-IFV, as (46-47):

Where wy; = w=(w,,w,,..,m,) be the set of weights and A(a;) =

n wi
i=1 (U™,
C - [FPWG(SIBl,SIBz, ...,SIBn)t - 1-— ?:1(1 - Ui)wi B (46)
n wi
i=1(r)*"
?zl(.ui)wiJ
C - [FPWG(QBIJQBZJ ---:%n)tc = 1- ?21(1 - Ui)Wi 4 (47)

1= T (1 = 7)™
Property 7: Let W; = (um, Vg5 rm.), (i=1,2,..,n)isaset of C-IFVs, if @; = a, for all j, then (48-49):

C_[FPWG(SIBl,SIBz, ""SIBTI)LL: a (48)
C — IFPWG(IB,, By, ..., W) ye = @ (49)

Property 8: Let I; = (uﬂ;i, Va3 Tgmi), (i=1,2,...,n) is a vector of n C-IFVs, and (a1, a3, ..., @;) be any
permutation of (a4, @y, ..., &), then (50-51):

C — IFPWG(TB,, BW,, ..., W), < C — IFPWG (W}, W), ..., W), (50)
C — IFPWG(LB1, Ty, ..., W) e < C — IFPWG (W4, W), ..., W) e (51)

Property 9: Let W; = (ug,, van;; T, ), (i = 1,2,...,n) is the set of C-IF Vs, then (52-53):

Amin < C — IFPWG (1, W3y, ..., W)t < Amax (52)
Xmin < C - IFPWG(mllmZJ ---:%n)tc < Amax (53)

Where o, = (mini{,uai}, maxi{vai}) and a g, = (maxi{,uai}, mini{vai}).
Definition 10: Consider W; = (ugm,, van;; 7w, ), (i = 1,2, ...,n) be the collection of C-IFVs and the C-IFPWG
operators are defined as follows (54-55):

n
C — IFPOWG(BB;, By, ..., BWy), = @ agy (4
i=1
n
C — IFPOWG(By, Wy, ..., W) e = ® Aty (55)
i=1

wi(1+A(ay))
L wi(1+A(a))’
D ml-Sup(a'i, aj) ,(i =1,2,...,n). Furthermore, ((5)(1), 0(2), ..., G)(n)) be the set of permutations of U3;
i=#j

suchas ©(i) < O( + 1).

Where w; = w = (wy, Wy, ..., w,) be the set of weights and A(a;) =
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Theorem 4: To consider the information in definition 7, it can be shown that the aggregated value is also a
C-IFV, as (56-57):

[T (o)™,
C — IFPOWG (W1, By, ..., W) = | 1~ [liz1(1 — ve))™?, (56)
[T (re)™?
[Tz 1 (o)™
C —IFPOWG(W, Wy, ..., W) e = | 1 =111 (1 — voi)) ™, (57)
1-IT (A = re@)™t

Property 10: Let 23; = (uﬂ;i, Vg5 Tgmi), (i=1,2,...,n)is aset of C-IFVs, if a; = a, for all j, then (58-59):

C — IFPOWG (W, B, ..., W), = a (58)
C — IFPOWG (W, By, ..., W) e = @ (59)

Property 11: Let 13; = (,uggi,vm; rm.), (i =1,2,...,n) is a vector of n C-IFVs, and (a1, a3, ..., a;) be any
permutation of (a4, @y, ..., &), then (60-61):

C — IFPOWG(TB,, By, ..., W), < C — IFPOWG (T3}, W), ..., Wiy, (60)
C — IFPOWG(TB,, B, ..., W) e < C — IFPOWG(TB,, Y, ..., W) ¢ (61)

Property 12: Let W; = (ugn,, van;; 7, ), (0 = 1,2, ...,n) is the set of C-IFVs, then (62-63):

Amin < C — IFPOWG (LB,, BB, ..., W), < Umax (62)
Amin < C — IFPOWG (W1, Wy, ..., Wy te < Amax (63)

Where o, = (mini{uai}, maxi{vai}) and a0y = (maxi{uai}, mini{vai}).

5 MADM Problem Based on Proposed Information

In this section, we arrange the procedure of MADM techniques based on the invented techniques for
evaluated operators to enhance the worth and stability of the proposed operators. For this, we consider a
collection of finite alternatives X = {x4,x5, ...,X,} and attributes G = {G4,G, ..., G}, where O =
(04,0,,...,0,) is the weight vector where 0; = 0,i =1,2,..,m,and Y%, 0; = 1. Consider a circular
intuitionistic fuzzy decision matrix Ay = (a;j)mxn and an attribute value provided by the decision-maker ey
isa;; = (,ul- VT j), which is C-IFV, where y;; is the membership degree, v;; is the non-membership degree,
7;; is the radius and 7;; is the uncertainty degree. Furthermore, we aim to evaluate the normalization of the

data by using the below theory, if we have cost type of data, but in the case of benefit type of data we do not
aim to normalize the data, such as (64):

a;j, for benefit attribute G; 12 64
ajj = (.uij:vij'rij) ~af; for cost attribute G; S =St “

Where afj is the complement of a;;, such that afj = (vij,uij; rl-j), clearly, m;; = 1 — p;j — ;.
Finally, we evaluate or address the above procedure, we have the following steps, such as:
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Decision Algorithm of the MADM Problem to Evaluate Robust Operators of Machine Learning

Set of Alternatives Set afweight
vector

Decision-matrix of Expert
judgment mdl Aggregate expert judgment's

Ranking of alternatives based on
@ computed score values

Two typedof attributes pé of attributes =3 Compute Overall weights

Normalization
process

=N Obtained weighted Support

—
Compute Support using Distance
Nommalized Decision-matrix — formula

Figure 2 Diagram for the MADM Problem.

Approach I
Step 1. Determine the supports based on distance measures, such as (65-66):
Sup (aij,ap) =1 —d(a;jap), i =1,2,..,n,&j,k=12,..m (65)

d(aij,aik) = % (lﬂl] - /'likl + |vij - vikl + |Tij - Tikl)!i =12, ...,Tl,&j,k =12,.m (66)
Step 2. Compute weighted support as follows (67):

A(a;) = Xiz10:Sup (aij, ai) (67)

ik

Step 3. Calculate the overall degree of weights §;;, (j = 1,2, ..., m) as follows (68):

£ = 6 ,-(1+c/z(a,-))

=AY =12, &), k=12,..m 68
51 0,(1+A(a))) J (68)

Where §;; 20, j =1,2,...,s,and }j-1§; =1
Step 4. To aggregate human opinions, we apply derived approaches of the C-IFPWA and C-IFPWG operators
as follows (69-72):

§ij
1- i=1(1 - .Uij) 7,
X; = C — [FPWA(ay, ajz, ., G5); = s (vi)™, (69)

1-— Hi=1(1 - T'l'j)fij
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( 1- i—l(l - #ij)fij JW
X; = C — IFPWA(a;;, Qizy ) Ag) e = s (i)', (70)
&ij
j=1(11;)"" /
&ij
( j—l(#ij) ! ’ \’
X; = C = IFPWG(ay, iz, ., as)e = | 1= [15_,(1 - vy))*Y, (71)
&ij
?:1(rij) ’ /
&ij
( jzl(#ij) 7, \’
X; = C = IFPWG(ay, Gz, ) a5)ec = | 1= By (1 — )Y, (72)
&ij

1-ITjo (1 —7y)

Step 5. Rank X;, (i = 1,2, ...,n) in descending order by using the ranking method described in Definition 2.
Step 6. Rank all the alternatives X;, (i = 1,2, ...,n) and select the best one following the ranking of X; (i =
1,2,..,n).

Furthermore, we also elaborate stepwise decision algorithm of the MADM problem in Figure 2. Figure 2
facilitates a comprehensive understanding of the aggregation process of expert's opinions.

5.1 Analysis of Machine Learning Through Proposed Operators

Machine learning (ML) analysis refers to the application of algorithms and statistical models to identify
patterns, make predictions, and improve decision-making based on data. Unlike traditional programming,
where explicit instructions are given to perform tasks, machine learning models learn autonomously by
analysing data. ML analysis has become central to a variety of industries due to its ability to process vast
amounts of data quickly and accurately. The primary objective of ML analysis is to allow systems to improve
over time, enhancing their predictive accuracy and relevance in real-world applications.

Machine learning is commonly categorized into three types: supervised, unsupervised, and reinforcement
learning, each with unique analytical approaches. Supervised learning is used when labelled data is available,
allowing the model to learn associations between input-output pairs. This type of analysis is widely used for
tasks like classification and regression, such as predicting stock prices or diagnosing diseases. Unsupervised
learning is applied to unlabelled data to uncover hidden patterns or groupings. Clustering and dimensionality
reduction are examples, commonly used in recommendation engines and customer segmentation.
Reinforcement learning is distinct in that it involves agents learning through interactions with their
environment, receiving rewards or penalties. It is often applied in game theory, robotics, and autonomous
systems.

Several algorithms are fundamental to machine learning analysis, each suited to different types of data and
problem domains. Linear regression and logistic regression are widely used in supervised learning for
predicting numerical outcomes and binary classifications, respectively. Decision trees and random forests are
used for both classification and regression tasks due to their interpretability and flexibility. Support vector
machines (SVMs) are effective in high-dimensional spaces, making them useful for text classification and
image recognition. In the unsupervised domain, k-means clustering and principal component analysis (PCA)
are common methods for clustering data and reducing dimensionality, respectively. Neural networks and deep
learning models have gained popularity for handling complex, unstructured data, such as images and audio,
through layers of processing that mimic the human brain's structure.

A crucial aspect of machine learning analysis is evaluating the model's performance to ensure accuracy
and reliability. For classification tasks, metrics such as accuracy, precision, recall, and F1 score are commonly
used to assess the model’s effectiveness. In regression tasks, mean squared error (MSE), mean absolute error
(MAE), and R-squared are popular metrics. Cross-validation techniques, such as k-fold cross-validation, help
in assessing the generalizability of the model by partitioning the data into training and testing subsets. Selecting
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the right evaluation metric is essential as it influences how well the model meets its intended purpose and helps
in comparing different models' performance accurately.

Machine learning analysis has transformative applications across diverse industries. In healthcare, ML
analysis is used for predictive diagnostics, drug discovery, and personalized medicine. In finance, algorithms
analyse vast datasets to detect fraud, assess credit risk, and manage investments. Retailers use machine learning
to enhance customer experience through personalized recommendations and demand forecasting. The
implications of these applications are profound, as ML analysis can optimize resources, reduce operational
costs, and provide insights that were previously inaccessible. However, the ethical and social implications—
such as data privacy, algorithmic bias, and transparency—are growing concerns that need to be addressed to
ensure responsible Al usage.

Despite its rapid advancements, machine learning analysis faces several challenges. Data quality and
availability can significantly impact model performance, as models trained on biased or insufficient data may
yield inaccurate predictions. The complexity of some ML models, especially deep learning networks, creates
a lack of interpretability, making it difficult to understand how decisions are made. This is a critical issue in
fields like healthcare and finance, where accountability is essential. Looking forward, research into explainable
Al (XAI) aims to make ML models more transparent and interpretable. Additionally, federated learning and
privacy-preserving techniques are emerging to address privacy concerns by allowing decentralized model
training on sensitive data. The future of machine learning analysis lies in building more ethical, interpretable,
and adaptable models to tackle increasingly complex problems.

In this section, we evaluate the problem of machine learning through invented operators. For this, we
consider four kinds of machine learning, such as 4;: Supervised Learning, A,: Unsupervised Learning, A3:
Semi-supervised Learning, A,: Self- supervised Learning. To select the best one, we have the following
criteria, such as network impact a;, growth analysis a,, stock exchange impact a;, environmental impact a,,
and the ratio of expert people in computers 5. Therefore, we utilize the C-IFPWA (or C-IFPWG) operator to
develop an approach to multiple attribute group decision-making with circular intuitionistic fuzzy information,
see Table 1, which involves the following steps:

Table 1. C-IF decision matrix.

A4 A, A3 Ay
a; (0.5,0.5;0.9) (0.8,0.2;0.1) (0.8,0.2; 0.6) (0.5,0.5;0.2)
a, (0.3,0.7; 0.8) (0.6, 0.4; 0.5) (0.7,0.3; 0.4) (0.6, 0.4; 0.5)
a; (0.4, 0.6; 0.7) (0.7,0.3; 0.3) (0.4, 0.6; 0.2) (0.9,0.1; 0.4)
a, (0.2, 0.8; 0.5) (0.1,0.9; 0.2) (0.5,0.5;0.3) (0.8,0.2;0.1)
as (0.9,0.1; 0.1) (0.5,0.5;0.3) (0.9,0.1;0.9) (0.7, 0.3; 0.8)
Approach 1
Step 1. Calculate the supports, see Table 2.
Table 2. C-IF distance matrix.
Ay Ay A3 Ay
d(aq,az) 025 04 0.2 0.25
d(aq,a3z) 0.2 0.2 0.6 0.5
d(aq,aq) 0.5 0.75 045 0.35
d(aq,a5) 0.8 0.4 025 0.5
d(az,az) 0.15 0.2 0.4 0.35
d(az,aq) 025 065 025 04
d(az,as) 095 0.2 045 0.25
d(az,ay) 0.3 0.65 0.15 0.25
d(az,as) 0.8 0.2 085 04
d(ay,as) 09 045 0.7 0.45
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Furthermore, with the help of data in Table 2, the support matrix is listed in Table 3.

Table 3. C-IF support matrix.

S T . .
Sup(aq,az) 0.75 06 0.8 0.75
Sup(aq,az) 0.8 08 04 05
Sup(aq,aq) 05 025 055 0.65
Sup(a,a5) 02 06 075 0.5
Sup(az,az) 085 08 0.6 0.65
Sup(aj,aq) 0.75 035 075 0.6
Sup(az,as) 005 08 055 0.75
Sup(az,aq) 0.7 035 085 0.75
Sup(asz,as) 0.2 0.8 0.15 0.6
Sup(ag,as) 0.1 055 03 0.55

Step 2. Utilize the weight &;;, (j = 1,2, ..., s) of the decision-maker to calculate the weighted support a;; of
the C-IFV, and calculate the weights fl-j, (j =1,2,...,m) associated with the C-IFVs aij, (G=12..,5),
where §;; = 0,j = 1,2,...,s,and Z§=1 §ij = 1, see Table 4 and Table 5.

Table 4. C-IF weighted matrix.
Ay Ay A3 Ay

A(a;) 225 225 25 2.4
A(a,) 24 255 27 275
A(az) 255 275 2 2.5

A(ay)  2.05 1.5 245 255
A(as) 055 275 175 24

Table 5. C-IF weighted matrix with support grades.

$ij A4 A, A3 '
T(&;1) 0.219595 0.193452 0.213415 0.193182

T(&) 022973 0.21131 0.22561 0.213068

T(&3) 0.239865 0.223214 0.182927 0.198864

T(&,) 0.206081 0.14881 0.210366 0.201705

T(&s) 0.10473  0.223214 0.167683 0.193182

Step 3. Utilize the C-IFPWA operator and C-IFPWG operator for t-norm and t-conorm, see Table 6.

Table 6. C-IF aggregated matrix.

Ay Az A3 Ay
C- (0.474715, (0.610975, (0.710752, (0.739266,
IFPWA, 0.525285, 0.389025, 0.289248, 0.260734,

0.732341) 0.301826) 0.556365) 0.464495)
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V% V.93 A3 .

C- (0.474715, (0.610975, (0.710752, (0.739266,
IFPWA,, 0.525285, 0.389025, 0.289248, 0.260734,
0.580452) 0.254388) 0.630966) 0.317153)

C- (0.371096, (0.482829, (0.631797, (0.685499,
IFPWG, 0.628904, 0.517171, 0.368203, 0.314501,
0.580452) 0.254388) 0.630966) 0.317153)

C- (0.371096, (0.482829, (0.631797, (0.685499,
IFPWG,, 0.628904, 0.517171, 0.368203, 0.314501,
0.732341) 0.301826) 0.556365) 0.464495)

Step 5. Rank A; (j = 1,2, ...,n) in descending order by using the ranking method described in Definition 2,

see Table 7.
Table 7. C-IF score values information.

Sa, Say, Sa, Say,
£ -0.0370 0.0670 0.2345 0.2223
A5 -0.0294 0.0565 0.2660 0.1518
A3 -0.1497 -0.0087 0.1663 0.1177
Ay -0.1888 -0.0104 0.1467 0.1723

Step 6. Rank all the alternatives &;(j = 1,2, ...,n) and select the best one following the ranking of A; (j =

1,2, ...,n), see Table 8.
Table 8. C-IF ranking matrix.

Methods Ranking values
C-IFPWA, Ay > K> K> 4,
C-IFPWA,, AL > K> K> 4
C-IFPWG; Ay > K > K> 4
C-IFPWG, A >Ry > 4y > A

The most valuable decision is A, according to the theory of C-IFPWA and C-IFPWG operators with t-norm,
but according to the theory of C-IFPWA and C-IFPWG operators with t-conorm, we obtain the best decision
is 4;.

6 Comparative Study

In this section, we compare the derived techniques or methods with various old or existing methods based
on the data in Table 1. For this, we needed to select some prevailing operators based on IFSs and circular IFSs,
then in the presence of the information in Table 1, we discussed their ranking results in Table 9. For this, we
have the following existing techniques, such as simple average operator (AVO) for IFST was exposed by Xu
[34]. Moreover, the geometric operator (GEO) for IFST was exposed by Xu and Yager [62]. In 2018, Jiang et
al. [36] derived the power AVO and power GEO for IFST. Garg [63] developed Einstein AVO and GEO for
the decision analysis process. Jana and Pal [64] proposed picture fuzzy AVO and GEO using operations of
Dombi t-norms and t-conorms. Al-Quran [65] modified the theory of t-spherical hesitant fuzzy information
and decision analysis process. Hence the comparative analysis is listed in Table 9 in the consideration of the
data in Table 1.

The most valuable decision is A, according to the theory of C-IFPWA and C-IFPWG operators with t-
norm, but according to the theory of C-IFPWA and C-IFPWG operators with t-conorm, we obtain the best
decision is A;. Anyhow, some existing techniques are working accurately because of limitations and vagueness
due to their structure. Hence, the proposed operators based on C-IFS are novel and no one can derive them.
Therefore, the derived operators are superior to existing techniques.



M. Rukhsar et al.: Analysis of power aggregation operators... 156

Table 9. Comparative analysis of the proposed and existing techniques.

Methods Score values Ranking values

Xu [34] — — —bounded — — — — — —bounded — — —
Xu and Yager [62] — — —bounded — — — — — —bounded — — —
Jiang et al. [36] — — —bounded — — — — — —bounded — — —
Garg [63] — — —bounded — — — — — —bounded — — —
Jana and Pal [64] — — —bounded — — — — — —bounded — — —
Al-Quran [65] — — —bounded — — — — — —bounded — — —
C-IFPWA; -0.037,—-0.09,—0.14,—-0.18 £ >R > 4K > 4,
C-IFPWA,, 0.066,0.056,—0.008,—0.010 £ > A > A > 4,
C-IFPWG; 0.23,0.26,0.16,0.14 £ > K > 43> 4,
C-IFPWG,, 0.22,0.15,0.11,0.17 A > A > A > 43

7 Conclusion

The decision analysis process is used to investigate suitable optimal options under various characteristics
or attribute information about human opinions. Although, various research scholars developed many
mathematical approaches and decision-making methods using different fuzzy domains of FSs and IFSs.
Sometimes decisions are unable to address incomplete and uncertain information due to the restricted and
limited structure of discussed mathematical models. The aims of this article are characterised as follows:

1)
2)

3)
4)

5)

Some flexible operations are formulated under the system of C-IFSs.

We derived power aggregation operators of the C-IFPWA, C-IFPWOA, C-IFPWG, and C-IFPWOG
operators with some prominent properties.

We evaluated the procedure of the MADM technique for resolving the utilization of the most suitable
part of machine learning in complicated scenarios.

We illustrated some numerical examples for addressing the comparison between proposed techniques
and existing methods to show the effectiveness and reliability of the presented operators.

A comparative study presented a contrasting technique for comparing the results of existing
approaches with pioneered mathematical approaches.

In the coming future, we aim to evaluate the power operators for circular pythagorean fuzzy sets, circular
g-rung orthopair fuzzy sets, and their extensions. Moreover, we can also apply the derived approaches of this
article to get flexible solutions from complicated real-life applications and numerical examples. Additionally,
we will prove their supremacy with the help of some applications discussed in artificial intelligence, neural
networks, machine learning, and game theory.
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