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EPO model NLIVIFN are analysed and classified. Furthermore, an
Investment intuitification technique is developed, which holds significant
Learning value for improving crispification skills. A realistic example is
DOI 10.30765/er 2563 presented to demonstrate the impact of NLIVIFN on an Economic

Production Quantity (EPQ) model, focusing on an imperfect
product with learning and reworking of defective items. A
procedure is introduced to determine the optimal shipment size
and defective percentage by minimizing the average expected total
cost. Results indicate that investment in learning leads to a 98%
recovery rate of defective items, providing economic benefits to
manufacturers. Additionally, a 50% increase in demand stimulates
learning, increasing production by 36% and reducing defective
item production by 51%. Finally, a comparative analysis
underscores the value of this novel work, showcasing its
effectiveness in addressing non-linear uncertainties and
enhancing production processes, cost efficiency, and decision-
making in supply chain management.

1 Introduction

In this decade, the knowledge of vagueness plays a crucial role in various research arena and researchers
from distinct fields like marketing, finance, science and technology, social media, clinical etc. has incorporated
the concept of impreciseness in their respective domain. In 1965, Prof. Zadeh [1] manifested a amazing
perception of the fuzzy set theory. Further, Chang & Zadeh [2] ignited the formation of fuzzy construction and
since then, several works have been established in this research arena [3, 4, 5] with the innumerable up
gradation and improvement of postulations of fuzzy set theory, the subject in due course became a matter of
enormous academic concern. As research in this arena has proceeded, the conception of vagueness is stretched
out into interval-valued fuzzy sets [6]. Fuzzy set doesn’t consider the degree of hesitation, that is degree of
non-belongingness. In 1986, Prof. Atanassov [7] explored the proposal of intuitionistic fuzzy set considering
both membership and non-membership functions of the fuzzy number. Further, as an extension of intuitionistic
fuzzy set, Zhang et al. [8] introduced interval-valued intuitionistic fuzzy number and its application. Also,
researchers developed arithmetic operation [9], assignment problem [10], similarity measure and score
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function [11] in interval-valued intuitionistic fuzzy arena. Additionally, some multiple attribute decision
making problem has been solved in interval-valued intuitionistic domain using some useful operators like 1)
aggregation operator [12] ii) exponential operator [13]. To Sum up, mainly MCDM methods are done based
on similarity measures [14,15], inclusion measure [16], entropy measure [17,18], cross-entropy measure [19]
and distance measures [20]. Instead of these techniques, researchers are also applied linguistic intuitionistic
fuzzy power Bonferroni Mean operators [21], fuzzy generalized aggregation operator [22], Hamacher
aggregation operators [23], hybrid weighted aggregation operators [24, 25], Hamacher ordered weighted
geometric operator [26], fuzzy prioritized hybrid weighted aggregation operator [27] to solve MCDM or
MADM problem. Further, some special suitable techniques are incorporated in interval valued intuitionistic
domain like evidential reasoning methodology [28], particle swarm optimization techniques [29], VIKOR
method [30], transform technique [31] to solve lots of decision-making problem.

The basic reasons for using non-linear interval valued fuzzy number in place of linear interval valued
fuzzy number are also explained, introducing the idea of non-linear and generalized interval valued
intuitionistic fuzzy numbers. Previously, the researcher used to consider takes the maximum value of truth,
falsity function as 1, however the fixed value concept must be abandoned. The viewpoint of different decision
makers at any point on a fixed scale is a certain quantity which is less than one (but the quantity belongs to the
zero to one interval). Thus, we make a generalized definition of NLIVIFN for all type of decision makers, and
construct the generalized number from this viewpoint.

The classical EPQ model Silver et al. [32] assumes that the manufacturing process is non-defective, and
all the items produced are of perfect quality. However, in real world, it is observed that the defective items are
produced due to various reasons such as machinery breakdown, human error, default in production processes,
etc. Thus, these defective items are either rejected or repaired and reworked, and these leads to essential
changes in corresponding total costing of the inventory system. Recently, numerous researchers are working
on EPQ/EOQ models with imperfect quality items. Khouja and Mehrez [33] formulated and solved an
economic production lot size problem of an imperfect production process. This was further triggered by
Salameh & Jaber [34]. They developed an EOQ model to determine the optimal lot size which contains
imperfect items and those are sold in a secondary market at a discounted price. El-Kassar [35] examined an
EOQ model with imperfect quality items, where the imperfect quality items are sold at a discounted price.
Recently, the researcher are does not scrap the defective items but rework it for further use. Buscher and
Lindner [36] have presented a procedure which synchronized the determination of production as well as rework
in batch sizes. Jawlaa and Singh [37] developed a model where the production of imperfect items are reworked
under preservation technology and learning. Glock and Jaber [38] worked on multi echelon production model
with learning, forgetting, and defective items are rework, and twice defective items are scraped. Investment in
inventory is essential to upgrade the machinery which will reduce the production of defective items. Dey and
Giri [39] investigated a model with investment to reduce the production of defective items. Giri and Glock
[40] has addressed on closed loop supply chain model with learning and forgetting during manufacturing and
re manufacturing of the returned items. Deng-Maw TSAI & Ji-Cheng WU [41] focused on economic
production quantity learning and rework; Wright, T.P [42] manifested factor effecting cost detection model;
Evan L. Porteus [43] introduced optimal lot sizing model ; Sahoo et al. [44] focused on MCDM model based
on trends and insights; Ali & Hussain [45] developed MADM model on intuitionistic fuzzy soft information;
Sing & Sarkar [46] focused on fuzzy linear equation model; Biswas et al. [47] introduced a new MCGDM
model on shopping field; Wang et al. [48] manifested complex intuitionistic fuzzy based DOMBI operator and
its application on green supplier selection. Apart from this work several researchers focused on [49-53]
decision making problem under uncertain environment.

In this paper, we developed the theoretical and graphical knowledge of NLIVIFN along with the
conception of parametric(a, §) representations, arithmetic operations and a new Intuitification technique of
NLIVIEN. Further, the paper investigates EPQ model with constant demand and imperfect production process
where the imperfect items are reworked. Here, the workers experience due to learning is considered in
NLIVIFN environment. The manufacturer invests money to improve the production quality and reduce the
number of defective items. Also in practice, the time required to produce depend on the number of items
produced by the worker. Thus, the production time and hence the production cost can’t be treated as a constant.
Thus, the paper focused on the effect of investment for an imperfect product with learning and reworking of
defective items on an EPQ model. A procedure is developed to determine the optimal decisions i.e., optimizing
the total cost.
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1.1 Motivation

In general, if we consider a fuzzy number then the degree of acceptance membership function is being
considered only. Now obviously when we deal with uncertainty then there should be a concept of non-
belongingness (i.e., the concept of intuitionistic fuzzy number). Now if the components are lying in an interval,
then how it is looks like? What will be the graphical figure? How can we define non-linear intuitionistic fuzzy
number? How can we establish the concept of ranking and de-intuitification of a NLIVIFN? How will we
apply it in real life problem? Aiming at these points we started to build up this article.

1.2 Novelties

Although there exist several articles where interval valued intuitionistic fuzzy sets and number are
defined and apply to various field. But still there are some crucial works is developed here in this
article.

(1) Formation of NLIVIFN in easier manner.

(ii) Graphical classification of triangular NLIVIFN.

(iii) De-intuitification of a triangular NLIVIFN.

(iv) Suitable application in real life inventory control problem.

1.3 Practical and Methodological Aims of the Study
1.3.1 Practical Aims of the Study:

e Optimize Investment in Defective Items: The study aims to provide a practical framework for
determining the optimal investment in handling defective items within an Economic Production
Quantity (EPQ) model, which is commonly used in production and inventory management.

o Improve Decision-Making with Learning Effects: The goal of the research is to enhance decision-
making procedures in production systems by integrating learning effects. It attempts to demonstrate
how learning might eventually lower the cost of defective items, improving operational efficiency.

e Application of Fuzzy Logic in Uncertain Environments: The study intends to apply interval-
valued intuitionistic fuzzy numbers (IVIFN) to address uncertainties in production, particularly
regarding defective items. This approach can help practitioners manage ambiguity and vagueness in
real-world situations.

1.3.2  Methodological Aims of the Study:

e Develop a Non-Linear EPQ Model: The study aims to formulate a non-linear EPQ model that
incorporates interval-valued intuitionistic fuzzy numbers (IVIFN) to represent uncertainty and
imprecision in production parameters, such as defect rates.

e Apply Intuitification Techniques: The methodology aims to improve the precision of the fuzzy
numbers by applying "intuitification" techniques, making the model more resilient and precise for
handling real-world data.

e Incorporate Learning Effects into EPQ Model: The study aims to incorporate learning curve
effects into the EPQ model to account for improvements in production processes over time, which
reduce defect rates and costs associated with defective items.

e Optimization of Production and Investment Decisions: The goal of the study is to create an
optimisation method that strikes a balance between investment, defect control, and production
quantity to guarantee optimal performance in uncertain and evolving environments.

1.4 Organization of the Paper

The article has been divided into seven sections. In section 2, we presented some mathematical
preliminaries. In section 3, we presented the different form and characters of Interval valued fuzzy sets and
number and algebraic properties. In Section 4, we focused on Intuitification of NLIVIFN. In Section 5, the
innovative model development and analysis have been addressed. In Section 6, numerical study along with
sensitivity analysis and comparative study have been discussed. Finally, the conclusion has been shown in
Section 7.
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2 Mathematical Preliminaries

Definition 2.1: Fuzzy Set: [1] A set M, defined as M = {((x, 1ty ((x)): a €M, py(a) € [0,1]}, where pg ()
denotes the membership function of M, is called a fuzzy set.

Definition 2.2: Intuitionistic Fuzzy Set: [7] Let a set X be fixed. An IFS A' in X is an object having the
form A = {< X, puzi(x),95(x) >:x € X}, where the pzi(x):X — [0,1] and 9 (x): X — [0,1] define the
degree of membership and degree of non-membership respectively, of the element x € X to the set A, which
is a subset of X, for every element of x € X (1):

O0<p,~ix)+9,~i(x) <1 (D

Definition 2.3: Intuitionistic fuzzy number: [7] An intuionistic fuzzy numberA is defined as follows:
1) an intuitionistic fuzzy subset of the real line
2) normal, i.e for xER such that p;(x)=1, hence vz(x) = 0
3) a convex set for the membership function u 5(x)
For x1, X2€ R, py(Axi+(1-1) x2) = min(u(x1),u5(x2)) where 0<A<l
4) a concave set for the membership function v4(x)
For x1, Xx2€ R, vi(Axi+(1-A) X2) <max(vz(x1), v;(x2)) where 0<A<I

3 Interval valued fuzzy sets and number

Definition 3.1: Interval-Valued Intuitionistic Fuzzy set: [8] An interval valued fuzzy set A on R is defined
by (2):

A= [{x, (ugu(x),uﬂ(x)),(ﬁgu(x), 19A~L(x))}:x € R] 2)

Where x € R and pzu(x), pze(x)94v(x), 94 (x), maps R into [0,1] and Vx € R, puz(x) < pzu(x) and
19A“U(X) > ﬂAL(x).

Definition 3.2: Linear Interval-Valued triangular intuitionistic fuzzy number: An interval-valued triangular
fuzzy number is denoted by

Alinvi = [{(all b, C15 A), (a, b: c; (l.))}, {(le b! €1, 6)! (d, b, €; .u)}] (3)

Where 0 < w <A<1,0<d<pu<landag; <a<b<c<calsol0<w+did<land0<A+pu<1.
Where the upper and lower membership function is defined by

(2 (x_al)', a; <x<bh

b—a,q

Haw () = i (=2 psx<q )

Cc1—
0, otherwise

and

) (E) a<x<bh
e (x) = w(%)-,beSc )
o
0, otherwise
And non membership functions are defined as
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(6 ', dy<x<b
Au(x)_ié' b<x<e1 (6)
1 otherwwe

and

,d<x<b
AL(x)_ b<x<e (7)

1 otherWLse

Figure 1.: Interval valued triangular intuitionistic fuzzy number [8]

Definition 3.3: (a, B)-cut of Interval-Valued triangular intuitionistic fuzzy number: a-cut of interval-valued
triangular fuzzy number

Alinvi = [{(al' b’ C1, A)r (a, br o5 (l))}, {(dl' b' €1, 6)' (d! br e, H)}] (8)

is denoted by
(Auinot) 5y = [{AY (@), AY ()3 AF (@), Ak(a)} (AY (B, AY (B2 AL (B, AEBDY] (9

Where, A (ap) = a; + %(b —ay), Al (@) = ¢, — %(Q —b)
Af(ay) = a+2(b—a), Ax(ay) = ¢ =2 (c = b)
AB)=b-L20b—d).AYB) =b+2(e; - b)

AFB) = b+ (b — ). AF(B) = b~ (e — )

also 0<a; <1,0<a,<l,also 0B, <1,0<P,<landa; < ay, 51 <(r, 051 + ;1,0 <
24) + ﬁz <1.
Note: If a; = a, ¢; = ¢ and a; = a, then it is a triangular fuzzy number.

Definition 3.4: Non-linear Interval-Valued triangular intuitionistic fuzzy number: An interval-valued
triangular fuzzy number is denoted by

Aninvi = [{(ab b: C1; A; P1, Pz); (ar br ¢, w;qq, QZ)}: {(dl' b) €1; 6; T, TZ)' (d, b! e, U; Sy, 52)}] (10)

Where 0 < w <A<1,0<6d<u<1landa,<a<b<c<c also0<w+d<land0<A+pu<l.
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Where the upper and lower membership function is defined by

—a\P _
A(E2)" arsx<b 0(Z9)", a<x<b
pgu(x) = c1=x\P2 s g (x) = c=x\ 12 (11)
l(cl_b) ,b<x<¢ w(c_b) ,b<x<c
0, otherwise 0, otherwise

And non membership functions are defined as

b—x\" b—x\51
5(b_d1) , i <x<b M(m) , d<x<b
- = _p\T: _ — _IN\S
9 zu(x) 5(%)2,19SXS61’ 9z(x) H(g)z'ngse (12)
- _
1, otherwise 1, otherwise

Figure 3.: NLIVIFN (Triangular) where p1,q4,71,5; > 1 and q5,p5,72,5, < 1.
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Figure 4.: NLIVIFN (Triangular) where p1,02,q1,92,71,72,51,52 < 1
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Figure 5.: NLIVIFN (Triangular) where 1,02, 7,72 < L and q4,92,51,52 > 1

Definition 3.5: (a, B)-cut of Non-Linear Interval-Valued triangular intuitionistic fuzzy number:a-cut of
interval-valued triangular fuzzy number (13):

Aninvi = [{(al' br C1; A; P1, Pz)' (a' b, ¢ w;(qq, qZ)}J {(dl' b! €1, 6; T, TZ)' (d' b! €, U; S, SZ)}] (13)

is denoted by (14):

(Aninvi)(a,ﬁ) = [{A?(az)'Alr](az)i A%(Ofl)ﬂ‘lﬁ(%)}» {A?(ﬁz)»t‘ly(ﬂz)iAlf(ﬁﬂﬂ‘l?(ﬂl)}] (14)

Where, AV (@) = a, + (%)ﬁ (b—a), A¥(ay) = 1 — (%)i (e —b)
aba) =a+(2)" (b -a), Aka)=c-(2)(c-b)
AV =b—(B2) b —d), AYB) =b+ (%) (e - b)

A =b— By o -, A =b+(2)* (-

also 0<a; <1,0<a,<1l,als0 0< B <1,0<fB, <landa; <a,,3, <P, 0<a;+£;<1,0<
(X2+B2S1.



A. Chakraborty, S. Pal: Non-linear interval valued intuitionistic... 167

Example: Let us consider a non-linear interval valued intuitionistic triangular fuzzy number as
* 1 2 13
Animni = [{(20,25,30;1;3,2), (22,25,28; 0.8; 1,5)},{(20,25, 29;0;2,2), (24,25,28; 0.2;1,5)}] (15)

The (a, B)-cut is denoted by,

(Aninvi)(a,ﬁ) = [{A?(sz)ﬂ‘ly (a2); A% (al)rA£ (al)}r {A?(ﬁZ)rAy (:82)1 A% (ﬁl)rAg (:81)}] (16)

1 1
Where, AV (ay) = 20 + 5(ay)3, AY(ay) = 30 — 5(ay)2

L _ 15a, L _ _ &2 2
Ab(ay) = 22+ 52, Ak(ay) = 28 - 3(22)

AV () = 25 = 582 A (By) = 25 + 4(By):
AL(By) = 25 — (5B, Ak(By) = 25+ 3 (322)

Table 1: Numerical Results

C;la ‘[i’z: A%’(“z) Ay(“z) A% (ay) AI%(‘H) A?(ﬂz) AH (B2) AzL (B1) Al?(ﬂﬂ
1> P2
0 20.0000 | 30.0000 | 22.0000 | 28.0000 | 25.0000 | 25.0000

0.1 22.3208 | 28.4189 | 223750 |27.9531 | 24.8419 | 26.2649
0.2 22.9240 | 27.7639 | 22.7500 | 27.8125 | 24.5528 | 26.7889 | 25.0000 | 25.0000
0.3 233472 | 27.2614 | 23.1250 | 27.5781 | 24.1784 | 27.1909 | 24.9998 | 25.0938
0.4 23.6840 | 26.8377 | 23.5000 | 27.2500 |23.7351 | 27.5298 | 24.9961 | 25.2976
0.5 23.9685 | 26.4645 | 23.8750 | 26.8281 |23.2322 | 27.8284 | 24.9802 | 25.5850
0.6 242172 ] 26.1270 | 24.2500 | 26.3125 | 22.6762 | 28.0984 | 24.9375 | 25.9449
0.7 24.4395 | 25.8167 | 24.6250 | 25.7031 |22.0717 | 28.3466 | 24.8474 | 26.3706
0.8 24.6416 | 25.5279 | 25.0000 | 25.0000 | 21.4223 | 28.5777 | 24.6836 | 26.8573
0.9 24.8274 | 25.2566 20.7309 | 28.7947 | 24.4138 | 27.4014

1 25.0000 | 25.0000 20.0000 | 29.0000 | 24.0000 | 28.0000

4 Intuitification of NLIVIFN:

Intuitification method is an essential technique for a fuzzy problem from two crucial viewpoints (i) those
who are not familiar with the idea of fuzzy, they can relate the solution, (ii)) What is the crispified significance
of the intuitionistic solution. Intuitification is the process of producing a scientific result in intuitionistic logic
that relate with crisp number. There are several intuitification techniques among them some common and
useful aids are as follows:

(1) Centre of Area (COA) method

(2) Bisector of Area (BOA) method

(3) Largest of Maxima (LOM) method
(4) Smallest of Maxima (SOM) Method
(5) Mean of Maxima (MOM) method:

4.1 Alpha-Beta Cut (a/B) Method:

Here we developed an intuitification method for NLIVIFN based on its parametric representation defined
as follows (5):
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A [
b f (L7 (ay) + R (ay))day J (L7 (ap) + R (ay))da, N
B 2 2
0{1=0 a2=0
1 1
a1 +(E)P1(b—ay)+c,—(B)P2(c;-b) |da
1 (HB)RTB) B, 5 (LM BO+RT(BD)aps i ( (G emea(G) ) L
fﬁ2=8 2 ﬁlzu 2 - 0{1=0 2
1 1
a+((%2)q1(b—a)+c—((%2)q2 (c—b))daz
w
fazzo 2 +
B ri B2 % B1 é B1 %
) b—(82)" -y +b+(52) 2 (e1-) |ap, ) b—(T) (b—d)+b+(7) (e=b) |dp,
fﬁZ:‘S 2 ;fﬁ1=u 12
a;A+ (b — al)rz;ll +cA—(c; —b) 1+pp22 - )
—aw — (b —aq) 24 _ — p) L4z —
aw — (b —a) Trq, @ +(c—b) v +2b(1 —9)
1 _(1)ﬁM+(z)%M_2b(l_ Vil (7)
2 8 ﬁ+1 8 %+1 K
1 1
N (1)§ (-0 (1)% (e-n)1-w"
L i i+1 I %+1 )
Note: Forp; = p, = q1 = q, =1, =1, = 51 = 5, = n we have the defuzzification value as (6),
1 Ain wn
D= E{(al +c)A+2b—a _Cl)m_ (a@a+c)w+(a+c— 2b))m+ 2b(u—6) +
 ( a-s) % (2b-d-e)(1-p) T
1\n (ey4d;—2b)(1-6) n 1\n (2b—d—e)(1—p) n
()= +(5) CIra } (18)
Note: For the particular form n = 2, we have (7):
1 21 2w
D =5{(a1 +c))A+2b—a; — cl)?— (a+c)w+(a+c— 2b))?+ 2b(u—96) +
1 3 1 3
1)z (e10,=20)(A-8)7  (1\z @b=d-e)1-p)2
R e O 9)

S Model Development and Analysis
5.1 Model description and notations

We have extended Tsai & Wu [41] by considering investment as a crucial parameter to reduce the
production of imperfect item. The paper considers an EPQ model for single item with constant demand in
which the learning effect in the unit production time for an imperfect production system is investigated. The
model we have observed that Q quantity of the item is produced by the manufacturer. The production process
is not perfect and hence % of defective items is produced. Thus Q(7-f) are perfect quality items which are
produced during regular production time 7:. Defective items are reworked after the regular production
processes finishes and no extra defective items are produced. The production time is not fixed, and it depends
on the learning effect of the worker because as the time goes on the worker become more experienced and
hence requires less time to produce. Also, manufacturer invests money to reduce the imperfect production. The
figure 6 and figure 7 given below depicts the on-hand inventory of non-defective and defective items.

In addition to the facts stated above, we assume the following here after:
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e A constant setup cost is allotted for each cycle.

e  Here, production rate of perfect quality items larger than the demand rate i.e., Q(1-f) > DT . Moreover,
the rework rate is also higher than the demand rate.

e  The manufacturer invests money to enhance the production process quality by buying new machinery,
improving old machines through maintenance and repair, worker training, etc. We consider Porteus [43]
logarithmic investment function as I(f) = ;ln (%), where 7 is the percentage decrease in B, per unit of

currency increase in investment and o is the original percentage of defective items produced before
investment.

e  Wright's [42] invented the learning phenomenon by suggesting the relation between man hour
involved to produce unit item and collective production which is written as Ty = Ty j~1, where T; denotes time
to produce j™ unit and 1 is thFe learning rate (0 < [ < I). In this paper we have assumed the time required to

. . . . . 1t . .
produce x items under learning during regular production runs is t1(x) = a'* while to produce y items under

learning during reworking production runs is t*(y) = a2y12 where -1< 11,1:<0 are learning coefficients and a;,
az are time required to produce the first unit for each cycle for regular and rework production run respectively.
To develop the model some notations are used throughout the research which are defined as follows:

Q Production lot size for each cycle (decision variable);
D Demand rate per unit time;
T Regular production time;
T, Rework time;
T; Depletion time;
T Cycletime (T =T; + T, + T3);
. . . . 1 . .
b Learning coefficient related with regular production, [; = %, where C: is Learning rate
in regular production;
2 Learning coefficient related with reworking production, [; = %, where C: is Learning
rate in reworking production;
T Percentage decrease in defective items per unit currency increase in investment;
S Setup cost for each cycle;
Ci Manual labour cost for production per unit time (inspection cost is incorporated);
C2 Refurbish cost of defective quality items per unit time;
hi Holding cost for each perfect item (i.e., useful item) per unit time;
h Holding cost for each defective quality item which are reworked per unit time;
4 Inventory Level
Do
(P
‘e

e

Figure 6.: On-hand inventory level of the non-defective items
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L Inventory Level

.
-

54— T —><- T;-DEQ— T; —b Time
"o ik

e

Figure 7.: On hand inventory level of the defective items

5.2 Learning in regular production
In this model we use Wright's Learning curve in production time of regular and reworked items in different

. . . . . 1t .
way. Here we consider the learning rate in regular production runs is t'(x) = a'* and that of during rework

is t1(y) = a,y"” where —1 < 11,12 < 0. Thus the total time taken for production of the Q regular items is
given by (20):

Q Ql1+1
Ty = [; aixtidx = “tlﬂ (20)
1
Thus, using Q = [lla—ﬂ T1]ll+1 which is the total quantity produced in regular production cycle (T;).
1
1
_ [ut,Jan
Hence Q,(t) = [ o t] .
The total time taken to produce rework items is (9):
BQ (BQ)'z*?
T, = [, aydy = ale e2y)
1
Let us write, Q,(T,) = 8Q = [lzaiTz]‘Z“, (10):
2
Thus
1
_ [l ]
Q) = [t (22)

During T3 the inventory depletes as there is no production in this period but there is a constant demand D

—D(Ty+T,
from the customer, thus T3 = w )

5.2.1 Setup cost:

To start and establish any business a cost is incurred in the inventory which includes place to set up (factory,
house for rent, machinery etc.) cost of machinery (to produce and to maintain), skilled worker, etc. The retailer
must incorporate a constant set up cost SC = S.

5.2.2  Holding cost for the non-defective item:

During production, the perfect quality items are to be held for T, T, and T period as shown in Fig 3.1. It
is observed that the inventory increases during T, and T, and decreases during Ts. This is obvious because
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items are produced during regular production time T; and imperfect items are reworked to a perfect quality
item during T, thus the inventory increases. While during T the items get consumed due to the demand and
there is no production during this period, hence the inventory decreases. Also, the inventory during T3 is of
perfect quality items. Thus, the holding cost of the non-defective items is (23):

HCy = hy (Jo (1 = PQ:(6) = DE)at + [[*((1 = F)Q — DTy + Q4 (t) — Dt)dt + [;*(Dt)dt) =
hl (% + alQl1+2 (ﬁ — L) — aZ(BQ)l2+2 ) (23)

142 1;+1 1,+2)(1,+1)

5.2.3  Holding cost of the defective items:

The inventory must hold the defective items during T; and T». During T the defective items are produced
with no rework and hence its inventory increases till T; where the maximum number of the defective items
is fQ. After T, the rework starts and hence the inventory of the defective items decreases. Thus, the holding
cost of defective items is (24):

HCI _ hz (foTlﬂQl(t) dt + fOTZ(,BQ _ Qz(t))dt) — hz (a1/3Ql1+2 n az(ﬁQ)lz+2 ) (24)

11+2 (I,+1)(15+2)

5.2.4  Production Cost:

Since the labour cost is considered per unit time and the items are produced till Ty, thus the labour cost is
only cost of production which is (25):

Qll+1
PC=cT,=¢ “111“ (25)
5.2.5 Rework Cost:
As the defective items get reworked during T, thus rework cost (26):
lr+1
RC = C2T2 = C2 M (26)

l,+1
5.2.6 Investment Cost:

In our model the production quality is a major tool for the decision maker. Its management is required to
lower the allied cost incurred for the manufacturing of better-quality item. Thus, is it is appropriate for the
manufacturer to make investment and diminish the number of defective items produced. Assuming the
logarithmic investment function, the cost incurred is IC (27):

IC=2In (%) (27)

Where 9 is the factional opportunity cost and 0<f<fo<I.
5.2.7 Total Cost (TC)

By adding up all the cost i.e., holding cost for non-defective and defective items, set up cost, production
cost, reworking cost, we obtain the total cost. Thus, the average total cost i.e., total cost per unit time
(T=T:1+T=+T>= (Q/D)) is given by TC(Q, ) (28):

1
TCQ,p) = T(SC + HCp + HC; + PC + RC + IC)

1— ,8 1 ) azDﬁlz+2le+1 > N alQllD azDﬂl2+1Ql2 N

D Q
=S—+h (= ll+1D( - -
Q+1<2+a1Q L+2 L+1 G+2G+D) T AL +1 T G+

alBQll+1 azﬁl2+2le+1 19Q BO
hZD( 11+2 + (lz+1)(lz+2)) + Eln (F) (28)
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Since Q is discrete and [ is continuous so it is not possible to prove analytically that the total cost
TC(Q, B) is jointly convex. Hence, we check the optimality separately and obtain some condition under which
the total cost is optimal.

For -1 < [;,1, <0, let us consider l; = —ky, lz = —k,,where 0 < ky, k, < 1 then for a given value

a TC -k 1-k _ Czkz Czkz
of Q. 55 = a;Dpr2Q1k (hy=hy - 2 2%) 4 ﬁ > 0,provided hy —hy = 22> 0. Thus hy > hy +
ﬁ_Q’ hence we can also conclude that h, > hy

Let us relax the integer constrain of Q and let us consider it as real variable then we have proposed a lemma
for optimality condition for the decision variable Q.

Lemma:

For h, > h, the total cost function TC(Q, B) is strictly convex with respect to Q for all Q < min(X;, X;),
where (29):

_ (c1(ki+1)(2=kq) ca(kpa+1)(2-k5)
X1, X2) = (ﬁ(l—klxnz—hl)'ﬁ(l—kthz—ha) (29)

Proof: Differentiating the total cost TC(Q, 8) twice with respect to Q and rearranging the terms we get (30),

62TC_2D Bo a;k.D (—-BQ(1-k;) _ c1(k1+1)
2¢? Q3<S+ m (ﬁ)>+ok1+2( Gy (2 T h (1—k1>)

azk,Dp1k2

ca(kp+1)
t ((2 k)(hz hy) + (1_—,(2)) (30)

In the above equation, the terms in the 2™ bracket is positive if (31)
c1(k1+1)(2—kq)
¢ < Bakn-n)

€2

and the terms in the 3" bracket is positive if

cy(ka+1)(2—k3)

B(1-kz)(hp—h1) (32)

Q<

Therefore 2—c aQ ‘> 0, i.e., the total cost TC(Q, B) is strictly convex for all Q < min(X;, X,) and h, > h;.

We also have discussed an algorithm to optimize the decision variables in consecutive cycles where the
production quantity may vary in all cycle. Here we consider the learning during production and rework as
NLIVIFN and then proposed intuification results are applied. Thus, we get (33, 34),

L= 2(n+1) (g +13)A = (g + i) w + 2Ln(A —w + p = 8) + 2L, (p — 6) +n(1 -
5\n "
1-8\n 1-#\n
6) (T) (l16 + ll7 - 2l12) + n(l - /J.) (Tu) (2l12 - 118 - llg) (33)
[ = m (1 + 1) — (s + Lis)w + 2Lon(A —w + e — 8) + 2L, (u—6) +
1 1

n(1 = 8) (52)" (las + Lo = 2La2) + 11 = W) (Z£)" 2oz = Lo = o) (34)



A. Chakraborty, S. Pal: Non-linear interval valued intuitionistic... 173

Then (35):
~— __ D [ G+ip (128 _ 1\ _ a;DpR2*2qlz+t a,0%D | a,DpltiQl2
TC@Q.p) ==S5+h (2 +a QD (55 - +5) GG ) TG T2 Gy T
a1/3QH+1 azﬁEHQEH 9Q Bo
hZD( t2 T haGey) T o ln(ﬁ) (35)

It is observed that the control parameters are not independent of each other. So in order to obtain the
optimum solution let us acclimatize an iterative algorithm as below.

5.3 Algorithm:

To obtain the optimum total cost with respect to the decision variables we must follow an algorithm. Thus,
in this section an algorithm is discussed step by step to understand the process.

e Stepl:Seti=17andf = f,

e Step 2: Solve for Q by (;T—QC = 0 and obtain Q = Q,

e Step 3: From the above value of Q = @, obtain the value of B by using aaL; =0 asf ="

e Step 4: Again, substitute the value § = * in step 2 and obtain the optimum value of Q as Q = Q*
e Step 5: Evaluate the optimal average total cost TC*(Q*, £*) from ( ) using f = B* and Q = Q*
e Step 6: Seti =i + I and considering a;(;+1) = a1;Q"% and ay(;41) = a;Q"
e Step 7:If |Q — Q;_,| > € then go to step 2 else i* = i — 1 and stop.
Thus i* is the number of cycles till we have the maximum learning occurs.

5.4 Flowchart:

The step-by-step algorithm is described by a chart to understand the flow of the problem and the way to
optimize the model. Thus, the flowchart is given below (Figure 8.):

Start
Initiallyi = 1,8 = &,

arc
/ 0. 0, Compute @ = @, /—
.

/ optimize 5,Q = Q, %ﬂﬁ =g /

Evaluation of the total cost when f = §°,Q=Q"
!
Updatea, .., = a,,Q"* and
8201y = 62:Q"

Figure 8.: Flowchart for the problem
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5.5 Numerical study

A numerical experiment with the following input parameter is conducted whose results are reported further.

Also, the learning during the production is 95% (which is equivalent to l;;, = —0.089) while that during
rework is 91% (which is equivalent to [, = —0.136).
Parameters:

r =60;S = 20000; h; = 8;h, = 20;c; = 1000;c, = 400; 3, = 0.2;a; = 0.01;a, = 0.008;
C; =0.94;C;, =091;9 = 0.02;7 = 0.0002;[,, = —0.089; l,, = —0.136;1;; = —0.093;
l,3 = —0.085;1,, = —0.091; [;; = —0.087; l;4 = —0.095;1;; = —0.083; l;3 = —0.092;
li,g = —0.086;1,; = —0.11; b3 = —-0.17; l,, = —0.13; l,5 = —0.15; [, = —0.10;
l,, = —0.18; l,g = —0.12; I, = —0.16; § = 0.1; u= 02, w= 08; A= 09;n = 2;

Thus, if we compare our nonlinear model with Tsai model, we can observe that, investment of money for
machine modernization or upgradation reduces the production of defective items with increase in produced
quantity. It is also observed that the optimum quantity (Q*) produced in case of linear and non-linear IVFN
environment is more as compared to the Tsai model and classical model, which means that model works better
in uncertain environment which is desirable. Considering the learning effect by investing in the model
increases the production of the items in both uncertain and crisps environment. Also, due to the increase in
investment, there is a decrease in the production of defective items which results in good reputation and a
decrease in total cost as compared to the previously established model.

Table 2: Comparative result of the numerical example.
Q* p* TC T/ T, T T
Our Model 636 0.0087 4018.21 3.93 0.0406 6.629 10.6
(in Non -
Linear
IVFN n=2)
Our model 715 0.0048 3773.08 4.373 0.0269 7.517 11.92
(in  Linear
IVEN taking
n=1)
Our Model 690 0.0062 3845.21 4.227 0.032 7.24 11.5
(in Crisps)
Tsai and Wu 455 0.2 5532.11 2.89 0.46 4.234 7.583
model (t=0)
Classical 548 0 4981.78 5.48 0 3.653 9.133
model
(1i=1=0,
B=0,1=0)

Figure 9 and figure 10 observe the comparative study of different models with respect to optimum quantity
and optimum total cost respectively.

Tsai [41] has considered constant defective item, which is not realistic, thus we have developed our model
by considering defective item as variable quantity. In our proposed model we have optimized not only the
quantity Q but also the number of defective items.

From Table 3 we observe that the learning is maximum in 10" cycle for the crisps environment.

Table 3: Optimal solution till learning occurs in crisps arena

Cycle | @+ p* T T T T T
1 690 0.0062 4.227 0.032 7.24 11.5 3845.21
2 614 0.0129 2.121 0.023 8.09 10.23 4118.78
3 581 0.0249 1.137 0.016 8.53 9.683 4250.03
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cyele | or | g N T o | o Con
4 565 0.0458 0.628 0.011 8.778 9.417 4316.76
5 557 0.0824 0.352 0.008 8.923 9.283 4350.64
6 552 0.1461 0.198 0.005 8.996 9.2 4366.85
7 549 0.2571 0.112 0.004 9.034 9.15 4373.32
8 547 0.4492 0.064 0.002 9.05 9.117 4374.32
9 546 0.7818 0.036 0.002 9.062 9.1 4372.26
10 546 0.9801 0.021 0.0009 9.078 9.1 4368.88

From Table 4 we can observe that the maximum learning occurs in 6™ cycle for non-linear IVFN
environment.
Table 4: Optimal solution till learning occurs in non-linear IVFN arena

Cycle | Q* p m T T T To(t%lc(f)“t
1 636 0.0087 393 0.0406 6.629 10.6 4018.21
2 574 0.025 1.478 0.016 7.956 9.567 4274.57
3 556 0.064 0.6137 0.0062 8.613 9.267 4351.91
4 550 0.156 0.2593 0.0024 8.905 9.167 4372.77
5 547 0.354 0.1099 0.0008 9.006 9.133 4374.11
6 547 041 0.0468 0.0002 9.086 9.133 4373.67

800
700
=y 600
% 500 ¥ IVFN (Linear)
‘g 400 @ IVFN (Non-Linear)
S 300 [ Tsai Model
o 0O Classical Model
200
100

Different Models

Figure 9: Changes in different model w.r.t Q

6000 -

5000

~~

Q

&, 4000, 1 OIVEN (Linear)

R

S 3000 1 B IVEN (Non-Linear)
Q

= @ Tsai Model

& 2000 1

59‘ u Classical Model

1000

0 4

Different Models
Figure 10: Changes in different model w.r.t TC

Figure 11 shows the comparitive study of the optimum quantity in crisps and NLIVIFN environment,
while figure 12 shows the comparitive study of the optimum total cost in crisps and NLIVIFN environment.
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CRISPS

NLIVIEN

Figure 11: Comparison between Crisps and NLIVIFN w.r.t. Q

7

.- B C‘f S‘S 1‘3

crisps

NLIVIFN

Figure 12: Comparison between Crisps and NLIVIFN w.r.t. B

Discussion: From the figure 11 it is observed that, if we consider our model under NLIVIFN than the total
cost will increase if the production of defective items increases. Also the defective items produced are at
maximum 45% in NLIVIFN while that in crisps environment percentage of defective items increases more
with steady cost. From figure 12, quantity produced is more in NLIVIFN as that of crisps environment.

If we compare table 3 and table 4 we can see that it requires 10 cycles to obtain learning effect under crisps
environment while in just 6 cycles to obtain the same in NLIVIFN arena. Again more quantity of perfect
quality items and less number of defective items are produced under NLIVIFN arena than under crisps arena.
It is also observed that it take less cycle time (T) in NLIVIFN. Thus the proposed model proposes to consider
learning as NLIVIFN.

Figure 13 and Figure 14 shows the 2D plot of total cost with respective to the percentage of defective items
(%) and optimum quantity (Q) respectively, while figure 15 shows 3D plot of total cost with respect to the
above two variables. Thus, the detail comparative study of our crisps, linear and NLIVIFN with the classical
and Tsai model is done below in table 5.

Table 5: Effect of parameter o

Parameters | Values | Quantity Defective Total Cost IC(B")
(QH fraction (B") (TCY
Bo 0.005 632 0.005 3984.69 0.00
0.01 632 0.008 3989.93 22.31
0.1 635 0.0084 4011.68 247.69
0.2 636 0.0087 4018.21 313.5
0.4 637 0.0094 4024.74 375.07
0.68 637 0.011 4029.92 412.42
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An essential insight is derived from Table 5 that the investment made to improve the product quality is
dependent on the original quality items. This is obvious, because for very low percentage of defective item
(Bo) in original manufacturing process, there is no requirement by the retailer to invest money to improve the
product quality. It is also observed that if the original defective percentage is more, than the investment is

required to improve the process quality also increases. Also, due to investment there is a decrease in production
of 98% of defective items.

430

43851

02 04 06 08 10

B
Figure 13: The behaviour of TC w.r.t.

4000}

4390
4385
TC

4380

4375

Figure 15: The behaviour of TC w.r.t. Q and f

6 Sensitivity Analysis

Let us observe the sensitivity of the various parameters considering learning as NLIVIFN is done below
in Table 6.
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Table 6: Sensitivity Analysis of various parameters

Parameters | Values Quantity Defective Total Cost IC(B")
QH fraction (B") (TCH

D 40 495 0.0132 3421.64 271.81

50 567 0.01 3748.29 299.57

70 704 0.0074 424221 329.68

80 772 0.0064 4427.34 344.20

hy 4 897 0.004 2935.12 391.20

6 734 0.0061 3525.37 349.00

10 570 0.0120 4449.05 281.34

12 520 0.0170 4835.83 246.51

ai 0.008 616 0.011 4102.73 290.04

0.009 626 0.0097 4062.02 302.62

0.011 647 0.0078 3973.28 324.42

0.012 658 0.0071 3927.2 333.82

S 10000 457 0.0157 2921.7 254.47

15000 555 0.0111 3514.4 289.14

25000 708 0.0072 4464.62 332.42

30000 773 0.0062 4869.71 347.38

T 0.00015 637 0.0116 4027.46 379.64

0.00025 636 0.0069 4012.16 268.19

0.00030 635 0.0057 4007.87 237.19

6.1 Discussion:

From the above table 6 it is observed that with the increase in demand rate (D), time required to produce
the first unit (a;) in production process, Set up Cost (S), the production lot size increases and the percentage of
the defective items decreases due to the learning effect and additional investment. This is obvious because with
the additional investment in the inventory, a larger production of lot sizes occurs. At the same time, the quality
of production improves due to the investment, resulting in fewer defective items over time. Also, increasing
the set-up cost, improves the maintenance of the items. This leads to increase in total costing as well as increase
in investment cost for reduction in production of defective items. While it is observed that with the increase in
holding cost of the perfect items (h;) the produced quantity decreases and the percentage of the defective items
increases. This is realistic because if the holding per unit cost increases, then the manufacturer should produce
less in order to optimize the total cost. As, T is inversely proportional to the investment so with the increase in
the 1, means decrease in investment cost. Also, as T increases, the total cost and the percentage of the defective
item decreases.

6.2 Advantages:

The model works best in uncertain and crisps environment as compared to the existing models. As the
model considers number of defective item as variable, so, it is realistic as the production of defective items
can’t be determine from the prior and it is affected by the learning behaviour of the worker. Thus, in this model
the effect of learning is also incorporated so that due to learning, the production of defective items decreases.
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6.3 Limitations:

This model considers in non-linear interval valued IFN whereas it can be also done in neutrosophic
environment. The model considers the effect of learning and investment in the production non-defective items.
The other aspect of the inventory model can be incorporated in future work.

7 Conclusion

In this article, we initiated the concept of non-linear interval-valued intuitionistic fuzzy set and their
graphical classifications are discussed here. Also, a new de-intuitification method is developed in NLIVIFN
arena using alpha/beta cut method. Further, we proposed an operation research related problem in inventory
field and discussed the optimal results. In the example of EPQ model we have observed that the while taking
learning as NLIVIFN then the maximum learning occurs faster as compare to crisps. Additionally, we have
observed that due to the worker’s experience the time taken to produce the item and to rework the defective
item decreases as the learning increases till saturation. Also, the optimal quantity produced is more and
production of defective item is less in NLIVIFN environment. Sensitivity analysis is also done here to justify
the results and usefulness of de-intuitification is also discussed in this article. Lastly, we observe that de-
intuitification results have a great impact in uncertainty based inventory control problem.

In future, researchers can incorporate lots of interesting algorithms using NLIVIFN in different fields like
medical diagnosis, pattern recognition, image processing, big-data analysis, economic and social-science based
on different real-life problems, etc.
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