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 Water stress is a significant component that limits crop 

productivity globally, particularly affecting maize yields. The 

adverse effects of water stress on maize necessitate an efficient 

method for rapid and accurate monitoring. An intelligent crop 

water stress identification model is an important component of the 

development of a decision support system for smart irrigation.  The 

present study proposes an intelligent kernel extreme learning 

machine model (CS-KELM) to recognize water stress in maize 

crops. To optimize the model's performance, the meta-heuristic 

cuckoo search algorithm is integrated to fine-tune the model. The 

proposed approach has demonstrated an accuracy of 94.20% and 

an F1-score of 94.39%. Integrating the cuckoo search algorithm 

into the extreme learning machine (ELM) model has enhanced the 

model performance, resulting in an improvement of 4.27% in 

accuracy and a 4.32% increase in F1 score compared to the ELM 

model. The improved model performance underscores its potential 

effectiveness in deploying the model into a decision support system 

for IoT-based irrigation solutions, enabling efficient and precise 

water delivery based on real-time stress detection. 
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1 Introduction 

 

Maize (Zea mays L.) is one of the one of the most vital cereal crops cultivated worldwide under a wide 
range of environmental conditions [1].  Climate change, marked by increasing amounts of carbon dioxide in 
the atmosphere and the subsequent rise in temperatures, has the potential to negatively affect the process of 
photosynthesis, the rates of crop growth, and the efficiency of water usage in crops, directly impacting 
productivity.  Being sensitive to water shortages, maize plants exposed to water deficit conditions during the 
tasselling stage experience substantial yield loss [2], [3]. Maize is particularly affected with global yield losses 
of around 15% due to drought stress [4], [5]. Water is a crucial factor in determining the quality and quantity 
of crop yields, and when its availability decreases, plants undergo a physiological response known as water 
stress [6], [7]. Climate change, changed precipitation patterns and increased evaporative demand make water 
stress in agriculture inescapable and intensifying [8].  Under these challenging conditions, a crucial aspect of 
sustainable agriculture is the early detection of crop water stress by closely monitoring key indicators.  In 
regions with water scarcity, precise planning of irrigation is also a vital factor for ensuring sustainable 
production [9]. Advancements in agricultural techniques have enabled the optimization of irrigation 
management. This includes the implementation of drip irrigation systems and the application of regulated 
deficit irrigation strategies, which are capable of maintaining crop yields while utilizing reduced irrigation 
volumes [10], [11]. In the context of climate change, successfully modelling the relationships between maize, 
soil, and meteorological conditions is crucial for sustainable water management and agricultural production. 
To reduce crop loss and effectively manage irrigation scheduling, it is crucial to determine whether the crop is 
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under water stress or not. Traditional water use management practices in maize farming often lead to 
inefficiencies, including over-irrigation or under-irrigation, which can negatively impact crop yields and waste 
valuable water resources.  

In the past, crop water status variations were measured using traditional methods like visual assessments 
or in situ measurements by trained experts [12]. However, these techniques are labour-intensive, costly, and 
relatively time-consuming, making them analyse data and process it in real-time. Hence, these traditional 
approaches are generally impractical for continuous and efficient monitoring. Advances in ICT have led to 
significant advancements across various domains, particularly in enhancing the efficiency of water resource 
management and irrigation practices through intelligent decision-making capabilities [13]. By utilising 
machine learning (ML) techniques, manual models can be replaced and experienced agronomists can be 
supported, resulting in the creation of an automatic irrigation decision support system.  Machine learning offers 
a panacea for the abovementioned challenges by providing intelligent, human-like solutions for efficient water 
use management and supporting smart irrigation systems [14]. Essentially, ML involves improving future 
performance by learning from past experiences. This field of study empowers computers to operate and 
generate decisions autonomously without the need for explicit programming [15]. ML models can analyse 
massive soil, meteorological, and crop health data to generate accurate predictions and recommendations for 
water requirements of the crops. These models, integrated with decision support systems and IoT, ensure that 
crop water demand is met and that crop losses due to water stress are reduced. The present study focuses on 
developing an intelligent ML based on a kernel extreme learning machine to identify crop stress in maize. 
Additionally, the performance of the model is enhanced by integrating the meta-heuristic cuckoo search (CS) 
algorithm. 

 
2 Related work 

 

Technology integration in agriculture has transformed traditional farming into a more precise and efficient 
practice [16], [17], [18]. At the core of modern agricultural decision-making is data-driven analytics, which 
provides comprehensive insights by utilizing vast data from sources like weather patterns, soil sensors, and 
historical crop information [19]. Through predictive and prescriptive analytics, farmers can forecast outcomes 
and refine strategies with remarkable precision, supporting smarter and more efficient farming [20]. Crop stress 
detection, leveraging similar approaches, helps identify early signs of stress caused by multiple factors.  
Machine learning models can excel at representing crop water stress, but optimizing them is vital for 
maximizing their effectiveness. Tuning these models adequately to navigate the complexities of agricultural 
data ensures more reliable prediction and informed decision-making. This section provides a brief review of 
recent studies on machine learning models for crop water stress detection and optimization techniques in 
agriculture.  

 
2.1 Machine learning models for crop water stress detection 

 

Several studies have highlighted the potential of machine learning models in identifying crop water stress 
using multiple modalities. Rajwade et al. [21] employed RGB and thermal imaging for the assessment of water 
stress in maize crops under rainfed conditions. In this investigation, the pre-trained deep learning model 
‘DarkNet53’ was trained to detect water stress and the model achieved above 90% accuracy on both datasets. 
Among the two approaches, thermal image-based detection was observed to be more accurate than RGB-based 
stress identification.  Pradawet et al. [22]  also utilized thermal imaging to accurately detect water stress for 
preventing the yield losses maize. In their study, the canopy temperature, growth parameters, and soil moisture 
data were collected at an interval of 5 days. Additionally, the study proposed a new wet/dry technique using 
sponge cloth for obtaining more reliable crop water stress index (CWSI) values. At tasselling, the CWSI at 55 
days after sowing (DAS), showed a significant linear correlation with the yield.  Loggenberg et al. [23] coupled 
hyperspectral remote sensing with ML models for identifying the water stress in vineyards. The two ensemble 
learners Random forest (RF) and Extreme Gradient Boosting (XGB) were employed for the classification. 
Further, Savitzky-Golay filter were also evaluated for smoothing the spectral data. RF was found to be superior 
in identifying crop stress with a test accuracy of 83.3%.  In another study, Tunca et al. [24] also used XGB and 
RF along with SVM for ML-based crop water modeling.  In their investigation, the crop water content was 
estimated using regression models using hyperspectral data.  
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The results showed that the XGBoost model obtained high accuracy, with an R² value of 0.96.  In another 
study, Moshou et al. [25] utilized least squares SVM with sensor fusion to identify water-stressed winter wheat 
from healthy ones. The authors have achieved a classification performance of 99%. A multitude of studies 
have focused on employing machine learning models to evaluate water stress across several crops, highlighting 
the importance of this approach for optimizing water management and improving crop quality. For instance, 
research on wheat [26], rice [27], and maize [8] has demonstrated the effectiveness of these models. King and 
Shellie [28] developed and tested an IoT-based decision support system for precision irrigation by monitoring 
the weather parameters, crop, and soil parameters.  

The modelling was performed using an artificial neural network and promising results were obtained. 
There were several other vineyard-based studies [29], [30]  that emphasize the crucial requirement for precise 
water stress management to guarantee the health and productivity of grapevines, improve grape quality, and 
achieve sustainable viticulture practices. Edge computing approaches are found to be very effective in enabling 
timely interventions. Amogi et al. [31] developed an edge computing algorithm, coupling thermal-RGB images 
to estimate water stress in apple orchards. An edge compute and IoT-based ‘crop physiology sensing system 
(CPSS)’ was utilized for the data collection. Further, the CWSI estimation algorithm was developed and 
coupled with the CPSS node for efficient water stress monitoring.  Recently, UAV-based data collection has 
been increasingly used for developing intelligent models for real-time monitoring and management of water 
stress in crops [32].  Sharma et al. [33] utilized UAV-based multi-spectral imaging for assessment of responses 
to water stress in maize and yield estimation.  Multiple ML and DL regression models were employed in the 
investigation and the H2O-3 DL model outperformed the other models in performance. In a similar study, 
Yang et al.  [34] also employed UAV-based multispectral imagery to assess the water stress. In their 
investigation, winter wheat was the focus, and different features were extracted from multispectral images. 
Ensemble models, including stacking and weighted stacking (WE-stacking), were developed to evaluate water 
stress.   
 
2.2 Optimization techniques in agriculture 
 

Optimization techniques have been increasingly applied in agriculture to enhance resource efficiency, refine 
crop management strategies, and strengthen decision-making processes [35], [36]. Coupling meta-heuristic 
optimization with ML models often yields improved predictive accuracy, efficient parameter tuning, and 
building robust models [37]. Meta-heuristic algorithms such as genetic algorithm (GA), particle swarm 
optimization (PSO), grey wolf optimization (GWO), etc. are extensively used for solving complex 
optimization problems in agriculture. These techniques have been coupled with ML models and applied in 
real-world scenarios and case studies, including irrigation scheduling [38], crop yield prediction [39], pest and 
disease management, resource allocation [40], and other precision farming applications. Jia et al. [41] 
employed a hybrid PSO-LSTM model for predicting daily evapotranspiration and further scheduling irrigation 
precisely. Four climatic station data were used in the study for developing the model and results indicated that 
the predictive power of the LSTM model has significantly improved using PSO integration. In another study, 
Abuzanouneh et al. [42] designed an advanced smart irrigation system that integrates IoT sensors and a meta-
heuristically optimized machine learning model.  

The system utilizes data collected from IoT sensors monitoring soil moisture, humidity, temperature, and 
light levels in the field. For the classification process to determine irrigation requirements, the authors 
employed the artificial algae algorithm (AAA) to optimize a least squares SVM model. The proposed design 
demonstrated a high level of effectiveness, achieving an accuracy of 97.5%. Yuan et al. [43] coupled grey wolf 
optimization with an extreme learning machine model for predicting the soil plant analysis development 
(SPAD) value of cotton crops under verticillium wilt stress. The spectral reflectance of healthy and verticillium 
wilt-infected cotton leaves was analysed and GWO-ELM was found to be highly accurate in modelling. He et 
al.  [44] estimated the soil moisture of maize using a hybrid SVM and chaotic whale optimization algorithm 
(WOA)  for precision irrigation. The authors optimized the penalty parameter of the SVM and the kernel 
function's coefficient using the WOA to obtain the best results. Zanial et al. [45] developed a river flow 
prediction model using an enhanced machine learning approach that integrates Artificial Neural Network 
(ANN) with Cuckoo Search (CS) Optimization. The hybrid CS-ANN model demonstrated improved prediction 
performance, achieving an R2 value of 0.935 during the testing phase, surpassing the performance of the 
standalone ANN model. Kiraga et al. [46] employed genetic algorithm to optimize state-of-the-art machine 
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learning models for estimating the reference evapotranspiration. Multiple datasets were analysed at different 
timescales, revealing that the GA-optimized ELM model consistently outperformed other machine learning 
models. Several other studies have also demonstrated the improved predictive capabilities of machine learning 
by incorporating optimization techniques for modeling evapotranspiration, which is crucial for irrigation 
planning and water resource management [47], [48], [49]. 
 
3 Materials and Methods 
 

The proposed framework involves the collection of crop and environmental parameters, followed by the 
development of a kernel-extreme learning machine model to identify water stress. The performance of the 
models was fine-tuned using the cuckoo search algorithm. This ensures that the optimal model is deployed in 
the decision support system for IoT-based solutions, enhancing the precision of water stress identification (Fig. 
1). The implementation of the models was done using a Python environment, making it an easily deployable 
model. The following section covers the detailed approach used in the study. 
 

 
 

Figure 1.  Overview of the key components of the stress detection framework using ELM.  
 

3.1 Data set and Data pre-processing 
 

Maize crops were grown at ICAR-Central Institute of Agricultural Engineering, Bhopal, India (77◦24′7.50′′ E, 
23◦18′56.91′′N) between December and April during the years 2021-2023 to gather data. Environmental 
variables and soil parameters were recorded in real field conditions. The crop was grown in vertisols, with 
clay content exceeding 50%, moderate fertility, and low salinity. The collected variables included 
relative humidity, environmental temperature, average canopy temperature, relative water content, and soil 
moisture content to determine crop water stress.  During two growing seasons, thermal imaging of the crop 
was conducted on selected days between 20 and 90 days after emergence (DAE), from 11 AM to 11 PM, under 
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clear-sky conditions. The average canopy temperature is calculated from the thermal image data. Daily 
weather data were concurrently collected from a meteorological observatory during the same data collection 
period.  The air temperature and relative humidity (RH) values were measured using a DHT22 sensor 
connected to an ESP32 microcontroller. A soil moisture meter equipped with a 200 mm sensing probe was 
utilized to monitor soil moisture content (SMC). Relative water content (RWC) was determined by measuring 
the fresh weight of fully expanded leaves immediately after sampling, oven-drying them at 70°C, and then 
calculating the RWC based on the fresh and dry weights. The dataset contained no missing values, so data 
imputation was not required during pre-processing. However, outliers were observed in the air temperature 
and relative humidity measurements, possibly due to occasional sensor fluctuations. Outliers were eliminated 
using the inter quartile range (IQR) method and normalization was performed to handle feature scaling issues. 
The dataset, consisting of 687 data points for these variables, was utilized for model development. The dataset 
is further divided into train and test sets with a ratio of 70:30 for the model training and testing. Further in the 
next stage, different ELM models (basic ELM, kernel ELM, CS-KELM) were developed and evaluated. 

 

 
 

Figure 2.  Schematic diagram of Extreme learning machine model. 

 
3.2 Kernel extreme learning machine 

 

ELM is a type of single-hidden-layer feedforward network consisting of three layers viz., an input, a hidden, 
and an output layer (Figure 2). A feedforward neural network employs gradient-based learning techniques to 
acquire knowledge from training data and iteratively modify parameters. This process leads to a reduced speed 
of learning, which can be a constraint for practical applications. On the other hand, ELM is characterized by 
only a single layer of hidden nodes and avoids the necessity for backpropagation. The output weights are 
determined using analytical methods in a single, straightforward calculation, without the need for iterative 
parameter adjustment. This strategy improves both the overall efficiency and speed of learning of the model 
[50]. The output of the hidden layer, shown as 𝐷, is computed by introducing the activation function 𝑓 to the 
dot product of the input features and weights and then applying the bias term. This can be represented by the 
equation:  
 𝐷 = 𝑓(𝑊. 𝑋 + 𝑏) (1) 
 
The weights of the output layer in ELM are calculated by utilizing the Moore-Penrose inverse of the hidden 
layer output matrix. The weight matrix that is produced is represented by the symbol 𝛽. The output predictions 
denoted as (𝑥) , are calculated by multiplying the output of the hidden layer 𝐷 with the output weights 𝛽. 
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𝑂(𝑥) = 𝐷 ∗ 𝛽 (2) 
 
ELM has the advantage of not requiring tuning because it randomly initializes the input weights and biases. 
However, this can compromise robustness. In order to enhance the ability of a model to generalize, the 
utilization of kernel approach can be integrated into the ELM. This study employs Gaussian kernel to the ELM 
model which is given by the Eq. (3). 
 𝐾(𝑢, 𝑣) = exp(γ 00𝑢 , 𝑣002 (3) 
                                                        
The kernel function acts as a hidden feature transformation, translating data from the original input space to a 
higher-dimensional feature space. Employing this kernel approach, KELM attains improved generalization 
capability than the traditional ELM [51]. The performance of KELM is significantly influenced by its 
hyperparameters, particularly the kernel parameter (γ) and the penalty parameter C. The value C controls the 
balance between model complexity and fitting errors, while γ represents a nonlinear mapping [52]. However, 
accurately determining the parameter intervals for KELM is challenging, as it often falls into local optima. To 
address this issue, the meta-heuristic cuckoo search algorithm is employed in this study.  The integration 
involves initializing a population of candidate solutions representing different KELM parameter sets. The 
integration process is shown in Figure 3. CS iteratively updates these solutions by simulating the behavior of 
cuckoos laying eggs in the nests of host birds, combined with a Lévy flight mechanism for exploration. The 
objective function evaluates the accuracy or error of the KELM model for each parameter set. After several 
iterations, the best parameters are identified and used to retrain the KELM for improved performance. 
 

          
 

Figure 3.  Flowchart of CS-KELM integration. 
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3.3 Cuckoo search (CSA) 
 

The CSA is a swarm intelligence optimization algorithm that was initially introduced by Yang et al. [53] in 
2009. The Cuckoo Search Algorithm (CSA) draws inspiration from the brood parasitism strategy of cuckoo 
birds. This strategy involves cuckoos laying their eggs in the nests of other birds, relying on the host birds to 
either raise the cuckoo chicks alongside their own or to reject the foreign eggs (Figure 4). The primary goal 
for cuckoos is to ensure the survival of their offspring by exploiting the natural reproductive behaviours of 
host birds. In CSA, each cuckoo symbolizes a potential solution to an optimization problem, while the eggs 
represent candidate solutions. The host birds act as the objective function, evaluating the quality of these 
solutions [54], [55]. The flowchart of CSA is shown in Figure 5. The algorithm begins by initializing a 
population of cuckoos with randomly generated solutions. These solutions are iteratively refined using a blend 
of local and global search methods.  
 

 
 

Figure 4. Schematic diagram of cuckoo search algorithm. 
 
Initially, each cuckoo selects a random nest Xt-1

m and then chooses the nest Xt
n using a Levy flight. The nests 

are evaluated by the function G.  The cuckoo replaces Xt-1
m with Xt

n if  G (Xt
n) >  G (Xt-1

m) and places egg in 
the nest Xt

n. Subsequently, it identifies the best nest in generation t by sorting the nest list. Meanwhile, some 
of the less suitable nests are abandoned with probability Pd ∈ [0,1], and new nests are constructed. 
 
A new nest (or solution) Xt+1

m is determined using Levy flight as shown in Eq. (4) 
 𝑋𝑛𝑡+1 =  𝑋𝑛𝑡 +  𝛽 × 𝑓𝑙ℏ𝑔ℎ𝑡_𝑙𝑒𝑛𝑔𝑡ℎ (4) 
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Figure 5. Flowchart of cuckoo search algorithm. 

 
Here, flight_length is the step length of the Levy flight, which follows a Levy distribution, and 𝛽 is the scaling 
parameter for the step length [56].  In this study, the Cuckoo Search Algorithm is employed to optimize the 
hyperparameters of the Kernel Extreme Learning Machine, with the aim of achieving the optimal model 
configuration.  
 
3.4 Performance evaluation of models 
 

The performance of the models were evaluated using metrics derived from the confusion matrix for the binary 
clasification problem. 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =   𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (5) 

 𝑃𝑟𝑒𝑐ℏ𝑠ℏ𝑜𝑛    =     𝑇𝑃𝑇𝑃 + 𝐹𝑃 (6) 

 𝑆𝑒𝑛𝑠ℏ𝑡ℏ𝑣ℏ𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙  =   𝑇𝑃𝑇𝑃 + 𝐹𝑁 (7) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒  =   2 ∗ 𝑃𝑟𝑒𝑐ℏ𝑠ℏ𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐ℏ𝑠ℏ𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  (8) 

 
Accuracy, precision, recall, and F1 score matrices are used for evaluating the model performance (Eq. 5-8). 
Here, TP denotes the True Positive, indicating the number/percentage of instances of stress accurately 
predicted by the model, FP denotes the Fall Positive/type I error. 
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4 Results and discussion   
 

During the first step of the experiments, the crop stress data set is loaded and standardized to ensure 
uniform feature scaling.  Exploratory data analysis is performed to understand the data distribution. The 
pairplot shown in Figure 6 provides a visual overview of the relationships and distributions among the input 
variables. The diagonal elements of the pair plot show histograms for each variable, providing insight into 
their distributions. Relative Humidity and environmental temperature appear to be evenly distributed across 
specific ranges, with noticeable peaks suggesting clustered values at certain points. The average canopy 
temperature shows a broader distribution, while both relative water content and soil moisture content exhibit 
a fairly uniform spread across their respective ranges, indicating variability in measurements. Off-diagonal 
plots display scatter plots depicting the relationships between each pair of variables. Notably, there seems to 
be a distinct pattern or correlation between average canopy temperature, relative water content, and soil 
moisture content, where clusters or trends are observable. These patterns could suggest underlying 
environmental interactions or dependencies, such as the effect of canopy temperature on soil moisture levels 
and water content.  For the modelling, The KELM model is defined, and a parameter combination is specified, 
including the regularization parameter C ranging from 0.001 to 1000, the kernel parameter ranging from 
0.00001 to 10, different kernel types (radial basis function, linear, polynomial, and sigmoid), and the hidden 
layer has a variable number of neurons ranging from 5 to 50.  

The parameter grid includes 100 discrete values for both C and γ to provide a thorough search. The 
optimizer is then configured with a maximum of 1000 evaluations and a population size of 25. This setup 
executes 40 generations. The optimizer iteratively searches for the best combination of hyperparameters over 
these 40 generations. After fitting the model, the best parameters are extracted. The final optimal model 
parameter is shown in Table 1 and the final KELM model is evaluated using this configuration using the test 
dataset for accuracy.  For all the models, the key performance metrics were closely monitored on both the 
training and test sets. There were no signs of overfitting observed, as the models maintained consistent 
performance metrics across different train-test splits. This uniformity suggests that the model's performance is 
stable and generalizes well across various subsets of the data, rather than being overly tailored to any single 
partition. The Figure 7 shows how the number of neurons in the KELM model affects testing and training 
accuracies when optimized with the cuckoo search algorithm. As the number of neurons increases, both testing 
and training accuracies improve initially, reaching their highest performance at 32 neurons with a testing 
accuracy of 95.21% and a training accuracy of 94.2%. Beyond 32 neurons, the testing accuracy fluctuates 
slightly but remains close to the peak, while training accuracy stabilizes around 93-94%. The results show that 
CS-KELM model exhibits superior performance with an accuracy of 94.20%, precision of 95.28%, recall of 
93.52%, and an F1 score of 94.39%. These values suggest that the optimization process enhances the model's 
ability to correctly classify stress and non-stress instances, minimizing both false positives and false negatives. 
CS-KELM with 101 true positives and 94 true negatives, demonstrates its high capability in correctly 
identifying both stress and non-stress instances.  

The model also shows fewer errors, with 5 false positives and 7 false negatives, indicating lower Type I 
and Type II errors, respectively (Figure 8). This superior performance is because of the dual benefits of kernel 
methods with the cuckoo search optimization algorithm, which effectively tunes the model's parameters to 
enhance the model's accuracy. The kernel function enables the transformation of the input space into a higher-
dimensional space, where complex patterns become more linearly separable, thus improving the model's ability 
to distinguish between stress and non-stress instances. The cuckoo search optimization further refines this by 
exploring a wide parameter space to find the optimal hyperparameters, reducing both false positives and false 
negatives, resulting in its superior performance metrics.  
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Figure 6. Pairplot of the dataset used in the study. 
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Figure 7.  Accuracy of the KELM model with respect to number of neurons during CS optimization.  

 
In contrast, the KELM model, without parameter optimization, shows slightly lower performance metrics with 
an accuracy of 92.75%, precision of 95.15%, recall of 90.74%, and an F1 score of 92.89% (Figure 9). The 
KELM model which achieves 98 true positives and 94 true negatives, falls slightly behind, showing an increase 
in false negatives (10) while maintaining the same number of false positives (5) as the CS-KELM (Table 2). 
This indicates a higher Type II error rate, suggesting it occasionally fails to identify stress instances. 

 

 
 

Figure 8. Confusion matrix of (a) Cuckoo search optimized KELM (b) KELM (c) ELM. 

 
Table 1. Performance of ELM models. 

 

Model Parameters Training Accuracy Testing Accuracy 

CS-KELM 
𝐶 = 0.007, 𝛾 = 75, K =’RBF’, 

Neurons = 32 

 
95.21% 94.20% 

KELM 
𝐶 = 1, 𝛾 = ’scale’, K =’RBF’, Neurons 

= 40 

 
94.28% 92.75% 

ELM Neurons = 40 92.71% 90.34% 
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Figure 9. Performance comparison of (a) CS-KELM (b) KELM (c) ELM. 

 
Table 2. Evaluation results of the models on the test dataset. 

 

Model TP TN FP FN Accuracy (%) 
CS-KELM 101 94 5 7 94.20 
KELM 98 94 5 10 92.75 
ELM 95 92 7 13 90.34 

 
This indicates that while the kernel method is effective, optimization further refines its accuracy and reliability. 
The ELM model, which does not incorporate kernel methods, demonstrates the lowest performance among the 
three, with an accuracy of 90.34%, precision of 93.14%, recall of 87.96%, and an F1 score of 90.48%, 
underscoring the impact of both kernel methods and optimization in improving model accuracy and robustness. 
The ELM model, with 95 true positives and 92 true negatives, exhibits the highest number of errors, with 7 
false positives and 13 false negatives. The higher false negative count in the ELM model underscores its lower 
recall, reflecting its inferior sensitivity to detecting true stress instances compared to the CS-KELM and KELM 
models.  The ELM model, which does not incorporate kernel methods, relies on a simpler architecture where 
the hidden layer weights are randomly assigned and fixed, and only the output weights are trained. This 
simplicity, while computationally efficient, limits the model's capacity to handle complex, non-linear 
relationships in the data. Consequently, the ELM model exhibits the lowest performance among the three, with 
significantly lower accuracy, precision, recall, and F1 score. The lack of both kernel transformation and 
parameter optimization results in a model that is less capable of accurately identifying between stress and non-
stress states, highlighting the critical role of advanced optimization techniques in improving model 
performance.  Overall, the CS-KELM model's superior performance in minimizing both types of errors makes 
it the most reliable for precise stress detection, crucial for effective IoT-based water management solutions.  
To deploy a Cuckoo-Optimized Extreme Learning Machine (CS-KELM) model from a Python environment 
to a cloud-based decision support system, accessible via mobile or computer, it is crucial to export the model 
in a suitable format for efficient utilization. Commonly, models are serialized using formats such as Joblib or 
Pickle. Joblib is particularly effective for handling large Numpy arrays and is frequently used with scikit-learn 
models due to its efficiency in serialization and deserialization. Alternatively, Pickle offers a general-purpose 
serialization format capable of storing various Python objects, though it may not be as efficient as Joblib for 
large models. For broader compatibility and framework interoperability, models can also be exported to ONNX 
(Open Neural Network Exchange), which is especially useful for models trained in diverse environments. After 
exporting the model in one of these formats, it can be easily loaded into a web service created with frameworks 
like Flask or FastAPI. This setup allows mobile applications to access the model via API calls, facilitating real-
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time predictions and integration into precision irrigation systems. By automating water delivery adjustments 
based on accurate predictions from the CS-KELM model, the system can enhance water efficiency and crop 
yield. Additionally, this cloud-based decision support system can automate irrigation schedules using edge 
devices such as Raspberry Pi and sensors deployed in the maize field. 
 
5 Conclusion  

 

This study has demonstrated the effectiveness of employing a Cuckoo Search algorithm coupled with kernel 
extreme learning machine (CS-KELM) for diagnosing water stress in maize crops for the development of an 
IoT-based precision irrigation framework. The integration of cuckoo Search with KELM was found to 
significantly enhance performance in comparison to the standard KELM and extreme Learning machine 
models. By leveraging the strengths of cuckoo search and KELM, this approach offers a robust solution for 
monitoring and management of water stress, ultimately contributing to more effective and sustainable 
agricultural methods. Integration of the models into the decision support system for smart irrigation can ensure 
efficient water usage and maximise productivity.  Future research could further explore the scalability of this 
model and its applicability to other crops and environmental conditions, potentially expanding its impact on 
precision agriculture.  
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