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1 Introduction

The use of polymer as a modifier in asphalt mixtures has gained increasing attention due to its potential to
enhance mechanical performance and promote sustainability in pavement engineering [1]. Asphalt mixtures
are subjected to repeated traffic loading and temperature variations, leading to permanent deformations such
as rutting [2]. One of the critical parameters in evaluating the durability of these mixtures is creep stiffness,
which measures their ability to resist deformation under sustained loading. In Algeria, rubber waste—such as
tires, shoe soles, and vehicle carpets—constitutes a significant challenge in solid waste management. To
address this issue and add value to this waste, several researchers in the field of public works have proposed
solutions aimed at both protecting the environment from the hazards posed by this waste and enhancing the
performance of bituminous mixtures used in wearing courses. Due to pavement degradation caused by high
temperatures and heavy traffic, researchers have proposed two types of modifications to enhance the
performance of bituminous mixtures. The wet process, where additives are mixed directly into the bitumen,
and the dry process, where additives are added directly into the asphalt mixture. Numerous studies have been
conducted on modified asphalt mixtures to enhance their performance in terms of stiffness, stability, fatigue
resistance, and creep behavior. Asphalt specimens with polystyrene contents of 0%, 5%, 10%, 15%, and 20%
by binder volume were tested at three temperatures (25°C, 40°C, and 55°C). The findings indicate that higher
polystyrene content leads to faster strain increase and greater permanent deformation at high temperatures
(55°C). However, increased polystyrene content also improves stiffness at higher temperature [3]. The results
of the static creep behavior of bituminous mixes modified with (0%, 1%, 3%, 5%) FORTA-FI fibers subjected
to different compaction forces (35, 50 and 75 blows) and temperatures (25 °C, 40 °C, 55 °C) showed that with
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the increase in temperature, the accumulated micro-strain also increased, while the stiffness modulus
decreased, which is consistent with the viscoelastic nature of bituminous mixes. In addition, a predictive model
was developed using artificial neural networks (ANN) to relate the strain and stiffness modulus to variables
such as temperature, fiber content and compaction force, thus achieving a high result [4]. Due to the increased
use of recycled materials such as RAP and RAS, a study of thermal cracking of flexible pavements in the
northern United States and Canada was developed. This study critiques the Pavement ME Design (MEPDG)
model, which overestimates creep compliance, especially when recycled materials are involved. The research
proposes a new model that better accounts for recycled materials and asphalt binder replacement (ABR),
showing increased accuracy in predicting pavement performance. The model was validated by laboratory data,
demonstrating a strong correlation [5]. Two asphalt binders, CAP 50/70 and AMP 60/85, were used to examine
the mechanical behavior of hot mix asphalts with respect to permanent deformation using static creep tests
and Superpave compaction curve parameters. The results show that asphalts containing the CAP 50/70 binder
exhibit better workability and lower deformation. Also, the use of a higher binder content results in greater
permanent deformation, but better workability.

The study identifies strong correlations between compaction indices and static creep test results,
suggesting that these indices can predict the behavior of the asphalt mix with respect to permanent deformation
[6]. A method for calculating the relaxation modulus of bituminous mixes by Laplace transform was
developed. It consists of performing uniaxial static creep tests on four bituminous mixes at different
temperatures and modeling the creep compliance using the Prony series and the power law. The relaxation
modulus is derived from the creep compliance by Laplace transform, the results being validated by two
methods: Simpson and Gauss. The study introduces a more efficient and accurate method, using the fixed
Talbot method for numerical inversion, 25 times faster than the Gauss method, thus providing a powerful tool
for the interconversion of viscoelastic functions of bituminous mixes. The results of using recycled
polyethylene terephthalate (PET) fibers at different percentages (0.3%, 0.5%, 0.7% and 1.0%) to improve the
performance of asphalt concrete by increasing its resistance to fatigue cracking and rutting indicate that
mixtures containing 0.5% PET fibers provided the most significant improvements, improving resistance to
permanent deformation, increasing the modulus of resilience and increasing resistance to fatigue and rutting,
making it the optimal fiber content for asphalt mixtures [7]. To predict the creep rate as a function of rubber
content, temperature, compaction, and load stress of modified asphalt concrete with different rubber contents,
a multi-layer backpropagation network model was developed based on experimental data.

The results show that a 2% polymer addition reduces the creep rate, but higher percentages do not further
reduce the permanent deformation. The ANN model has been shown to be effective for the design of modified
asphalt concrete, with accurate predictions and a low error rate [8]. The results of the study of the use of low-
density polyethylene (LDPE) plastic waste as an additive to improve the creep and recovery behavior of
bituminous mixes showed that the addition of 5% LDPE improves the thermomechanical performance of the
mix, reducing the total deformation by 51% at 20 °C and by 13% at 50 °C. This modification improves
resistance to permanent deformation, stiffness and durability, providing an economical and ecological solution
for road construction, especially in hot Saharan regions where service temperatures are high [9]. Two
predictive models to improve the prediction of asphalt mixtures' creep compliance performance were utilized
: one using multiple regression analysis and the other utilizing feed-forward artificial neural networks (ANN).
The models were assessed based on factors like loading time, testing temperature, asphalt modification, air
voids level, and aging conditions. The findings reveal that the ANN model significantly outperforms the
regression model in prediction accuracy, explaining over 99% of the measured data, making it a promising
tool for efficiently selecting asphalt mixture variables with minimal error [10]. Furthermore, other studies have
achieved notable success in using machine learning methods to model creep modulus and creep compliance
in asphalt mixtures. Among the most influential studies, Zofka and Yut (2012) employed a one-hidden-layer
artificial neural network (ANN) model with selected input parameters to model asphalt creep compliance,
achieving a high correlation of 97 to 99 percent between predicted and measured values [11]. Liu and Liu
(2021) predicted low-temperature creep compliances of asphalt mixtures using both multiple linear regression
and ANN after analyzing a dataset of 1,890 samples [12]. Their models significantly outperformed existing
methods, delivering much higher prediction accuracy [12]. Similarly, Roshan and Abdelrahman (2024)
applied ANN to estimate flexural-creep modulus, demonstrating a high coefficient of determination (near
90%) for their proposed model [13]. However, the models previously discussed in the literature have been
primarily limited to multiple regression analysis and artificial neural networks.
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This study introduces two key contributions. First, it successfully investigates the effect of rubber—
derived from recycled materials like shoe soles and vehicle carpets—on the static creep behavior of asphalt
mixtures. Rubber was integrated into the asphalt mixture using the dry process, and the asphalt samples were
compacted using both the gyratory compactor and the Marshall method before being subjected to a
compressive stress of 0.14 MPa. Second, the study provides new alternative models for predicting creep
modulus and creep compliance in asphalt mixtures by applying two advanced machine learning techniques for
the first time: artificial neural networks (ANN) and the adaptive neuro-fuzzy inference system (ANFIS).
Moreover, the study uses several high-performance indicators—such as mean absolute error (MAE), root
mean square error (RMSE), coefficient of determination (R?), and Pearson correlation coefficient (R)—to
assess the generalization capability of the learning models and compare the predictive capabilities of the two
methods.

2 Materials
2.1 Aggregates and bitumen

In this study, sand ( 0/3) and limestone gravel (3/8, 8/15) were utilized to prepare asphalt concrete mixtures.
These aggregates are from the KADDARA quarry, located in Boumerdes, Algeria and are commonly
employed in the construction of flexible pavements. Prior to mixture preparation, the aggregate quality was
evaluated and found to meet the specifications outlined by the Ministry of Road Transport and Highways
guidelines. The mechanical properties of the aggregates used are presented in Table 1.

Table 1. Properties of mineral aggregate.

Fraction
Properties Test method 0/3 | 3/8 | 8/15 Specifications
Specific gravity (g/cm3) NA P 18-555 2.71 2.67 2.69 >2.6
Los Angeles coeff (%) EN 1097-2 - - 24.3 20 <LA<30
Micro deval (%) EN 1097-2 - 13.6 19.8 20 <ME<25
Sand equivalent (%) EN 933-8 56 - - > 60
Flattening coeff (%) EN 933-3 - 9.8 12.5 <25

2.2 Asphalt binder

The study employed a 40/50 penetration-grade bitumen, procured from the Algerian oil refining company
NAFTAL, with its properties outlined in Table 2.

Table 2. Properties of bitumen.

Properties Test method Value Specifications
Penetration (25°, 0.1mm) EN 1426 43.63 40-50
Softening point, C° EN 1427 53.25 50-58
Flash point C° ENISO 2592 300 >250°
Ductility (cm) NA 5223 >100 >100
Specific gravity (25C°) g/Cm3 NF T 66-007 1.039 1-1.1

2.3 Rubber

Characterization of the rubber was conducted using Fourier Transform Infrared (FTIR) spectroscopy, Scanning
Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). The size of the rubber is (0.1 to
2mm) [14], [15]. FTIR analysis suggests that the rubber primarily consists of styrene-butadiene-styrene (SBS)
combined with zinc oxide. The SEM analysis revealed that the material has a dense and heterogeneous
structure [16].
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3 Samples preparation and Methods
3.1 Agregate gradation and samples

The optimal aggregate-bitumen mixture was determined through multiple iterations of aggregate and
bitumen percentage combinations. This process involved the use of the gyratory compactor test to evaluate
and refine the mix design. Several trials were conducted to ensure that the final blend met the required
specifications set by the standard. The selected mixture demonstrated satisfactory performance in terms of
density, void content, and mechanical properties, ensuring compliance with the established criteria for
durability and stability. Samples for both control and modified mixtures were prepared by combining the
optimum asphalt binder content (5.76%) with the specified percentage of rubber and aggregates, using the dry
process. The mixtures were heated to 160°C and thoroughly mixed to ensure uniform coating of the aggregates.
They were then kept in an oven at 160°C for 120 minutes, a duration confirmed to be sufficient for achieving
complete interaction between the rubber and the bitumen [17], [18], [19]. Static creep tests were performed on
various asphalt mixtures at two temperatures, 20°C and 60°C, using samples compacted with both the Marshall
Hammer and the gyratory compactor.

3.2 Visco-deformation test

This test involves subjecting asphalt mixture samples (0/14 grading), including control and modified mixtures
with rubber contents of 0.25%, 0.5%, and 0.75%, to a compressive stress of 0.14 MPa. The test was conducted
at two temperatures, 20°C and 60°C. After preparation, the samples were left to rest for 24 hours and then
conditioned at the test temperature for 4 hours. The test consisted of two phases: a loading phase lasting 1 hour
and an unloading phase of the same duration. The following parameters were recorded during the test: total
deformation (ero), initial deformation (em), permanent deformation (eper), creep modulus, and creep
compliance.

3.3 Artificial neural network

An artificial neural network (ANN) is a form of artificial intelligence inspired by the intricate workings of the
human brain. It is defined as a network of interconnected units, often referred to as "processing elements"
(PEs), "nodes," or "units," arranged in multiple layers: an input layer, an output layer, and one or more hidden
layers in between. Each node in a given layer is either fully or partially connected to various PEs in the other
layers through a modeling process [20].
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Figure 1. A structure of typical ANN.

The ANN modeling process involves multiplying each node in the previous layer by an adjustable connection
weight (Wji). At each processing element (PE), the weighted input signals are summed, and a threshold value
(0) is added [20] The total sum is then passed through a transfer function, which is selected based on the nature
of the problem the network aims to solve (e.g., linear, log-sigmoid, or tan-sigmoid functions) [21]. This
procedure is outlined in Eq. 1 and Eq. 2, as shown in Figure 1.
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yi =) ()

The fundamental concept of artificial neural networks (ANNSs) involves three primary phases: training, testing,
and validation. The objective is to minimize the discrepancy between predicted and actual values. During the
training phase, weights and biases are iteratively adjusted, typically using the widely adopted
"Backpropagation Algorithm," until specific stopping criteria are met. Ultimately, the system generates an
optimized model, defined by its weights and biases matrix, capable of accurately predicting target values from
input data with minimal error [22], [23].

3.4 Adaptive neuro fuzzy inference system

The Adaptive Neuro-Fuzzy Inference System (ANFIS) integrates the capabilities of an adaptive Artificial
Neural Network (ANN) with those of a Fuzzy Inference System (FIS)[24]. Introduced by Jang in 1993, ANFIS
has proven effective in solving nonlinear problems, as evidenced by numerous studies. By training on input-
output data, the system optimizes the parameters of its Membership Functions (MFs)[24]. The ANFIS
structure, depicted in Figure 2, is composed of five layers. The first layer, known as the fuzzification layer,
transforms input variables into fuzzy membership functions at each node j using an activation function . These
functions can take various forms, including triangular, trapezoidal, sigmoidal, and Gaussian shapes, as defined
by Equations 3 and 4[24].

Q} = (%) forj=1,2 3)
Q} = pr2 (y) forj=3.4 @)

Where x and y are the inputs, Q} is the membership function, and Aj and Bj are the membership values of .
In the current study, the Gaussian membership function presented in Equation. 3 has been used,

1) = exp (5] 5)

The parameters Cj and oj, representing the mean and standard deviation of the Gaussian curve, respectively,
act as the premise parameters for the membership functions. In the second layer, the weights (wk) of these
membership functions are calculated using Equation 6, which determines the firing strength of the associated
rules.

Q2= wi = uaj (X) * usj (y) fork=1,....,4andj=1,2 (6)

The layer 3 normalizes the firing strengths using Equation 5.

Wi
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Q, =W;=
! Z;_—1“’k

J

forj=1, .., 4 (7)

In layer 4, known as the defuzzification layer, the output for each node j is evaluated using Equation 8, and the
consequent parameters (p, ¢, and r) of the firing strengths f are calculated.

Qf =wifi=w; (px+qy+r) forj=1, .., 4 ®)

The final layer calculates the overall output in a single node by summing up all the incoming signals, as
described by Equation 9.
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Figure 2. Architecture of ANFIS model.

3.5 Statistical Performance Indicators

The accuracy of the proposed models was evaluated using various statistical performance metrics and graphical
analysis. The statistical indicators included the Mean Square Error (MSE), Root Mean Square Error (RMSE),
Coefficient of Determination (Rz), and Pearson Correlation Coefficient (R). These metrics are defined as
follows [25], [26]:

Mean Square Error (MAE):
L N
MSE == (Yiari = Youss)” (0 < RMSE < e0) (10)
i=1
Root Mean Square Error (RMSE):
1
RMSE = NZ(YM” ~Ypuet)” (0 < RMSE < o) (11)
i=1

Pearson correlation coefficient (R):

Z?:l((ytar,i - m)(yout,i - m))

R= (-1<R<1) (12)
—\2 ——\2
\/Eliv=1((ytar,i - Ytar) (Yout,i - Yout) )
Coefficient of determination (R?):
N Yori = Your i)
R2 =1 _21—1( tar,i out,l)2 (0 < NSE < 1) (13)

Z?]:l(ytar,i - Ytar)

4 Results

Permanent deformation behavior of both control and modified asphalt mixtures was evaluated at 20°C and
60°C using both Marshall and gyratory compaction methods. The study focused on the following parameters:
initial deformation (egc) measured after 15 seconds of loading, maximum deformation (gmax) recorded after 1
hour of loading, permanent or residual deformation (gres), creep modulus, and creep compliance.
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4.1 Effect of temperature and rubber on parameters of visco-deformation

This section investigates the influence of temperature (20°C and 60°C) and rubber content (0%, 0.25%, 0.5%,
and 0.75%) on the visco-deformation behavior of asphalt mixtures. The analysis focuses on key parameters
such as compressive strain, creep modulus, and compliance modulus, considering samples compacted using
both the gyratory compactor and the Marshall method.

4.1.1 Compressive strain

The compressive strain values are determined as the ratio of the recorded deformations to the initial height of
the specimen. This ratio is calculated using the following equation:

g(t) = Ah/ho (14)
The values of various compressive strain recorded during one hour of loading and one hour of unloading are
shown in Figure 3. The creep-recovery curves in Figure 3 illustrate the impact of rubber and temperature on
the axial micro-deformation of asphalt mixtures over time at both medium and high temperatures (20°C and
60°C).
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4.d) Compressive strain at 60°C with Marshall Method.

Figure 3. Compressive strain at 20°C and 60°C with gyratory compactor and Marshall Method for
control and modified mixtures: a) Compressive strain at 20°C with gyratory compactor, b) Compressive
strain at 60°C with gyratory compactor, c) Compressive strain at 20°C with Marshall Method, d)
Compressive strain at 60°C with Marshall Method.

The results indicate that compressive strain increase with rising temperature for the control mixture. At
higher temperatures, the recorded deformations are greater than at moderate temperatures. For samples
compacted with a gyratory compactor, the initial deformation at 20°C is 2.59%o, which is almost three times
smaller than the value at 60°C, which is 7.43%o. This difference is attributed to the elastic behavior of the
material at elevated temperatures. Conversely, for samples compacted with the Marshall method, the initial
deformation at 60°C is only 7% higher than at 20°C. Additionally, for samples compacted with a gyratory
compactor, the maximum deformation at 20°C increases almost 2.5 times compared to the initial deformation.
At 60°C, the increase is smaller, about 35% more than at 20°C. For the Marshall method samples, the
maximum deformation increases by 14% at 20°C and 54% at 60°C. During the recovery phase, samples
compacted with the gyratory compactor recover about 40% of the maximum deformation at 20°C, reflecting
the elastic behavior of the asphalt mixtures. At 60°C, the permanent deformation represents 62% of the
maximum deformation, indicating the viscoelastic nature of the asphalt.

The recovery rate for samples compacted using the Marshall method is similar to that of the gyratory
compactor samples. Moreover, the results reveal that the visco-deformation for Marshall compacted samples
occurs predominantly during the initial phase (about 80% at 20°C and 64% at 60°C of the maximum
deformation). For samples compacted with a gyratory compactor, the visco-deformation takes place mainly in
the final phase (about 60% of the maximum deformation at 20°C), but at 60°C, the creep deformation is
observed in the initial phase. At 20°C, the modified samples compacted with a gyratory compactor containing
0.25% rubber show a 26% reduction in initial axial deformation and a 15.63% reduction in maximum
deformation compared to the control mixture. At 60°C, both initial and maximum deformations decrease by
about 30% compared to the control mixture. For samples compacted with the Marshall method, the initial
deformation decreases by 29% at 20°C and 30% at 60°C, and the maximum deformation decreases by 42% at
60°C compared to 16% at 20°C. Mixtures containing 0.5% and 0.75% rubber exhibit significant increases in
deformation. At both temperature levels (20°C and 60°C), the mixtures with 0.25% rubber show better creep
performance, resulting in lower axial deformations. Conversely, the highest axial deformations are observed
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for mixtures with 0.5% and 0.75% rubber. The reduction in axial deformation for the 0.25% rubber mixture is
likely due to the presence of zinc oxide in the additive, which acts as a particle-agglomerating agent.
Additionally, the rubber functions as a dopant, strengthening the bond between the mixture components. On
the other hand, the increased axial deformation for mixtures with 0.5% and 0.75% rubber is likely caused by
unabsorbed crumb particles, which disrupt the binder continuity and the bond between the components. It is
also noted that mixtures compacted with a gyratory compactor exhibit lower axial deformations at lower
temperatures compared to those compacted with the Marshall method, leading to better resistance to rutting.
Overall, axial deformations recorded during the creep test are higher for samples compacted with the Marshall
method compared to those compacted with the gyratory compactor.

4.1.2 Creep modulus.

The stiffness of asphalt mixtures plays a vital role in evaluating their mechanical performance. It reflects the
material's capacity to withstand and distribute stress when subjected to a load. Creep modulus was evaluated
using two factors: the compressive stress applied to the samples (o) and the deformation observed during the
two-hour testing period (&(t)). The creep modulus was then calculated using the following equation:

Oo

= (15)

Sm =

Figure 4 shows the variation in creep modulus modulus as a function of the rubber percentage for samples
compacted using the Gyratory Compactor and the Marshall Method at temperatures of 20°C and 60°C.
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Figure 4. Creep modulus at 20°C and 60°C with gyratory compactor and Marshall Method for control and
modified mixtures: a) Creep modulus at 20°C with gyratory compactor, b) Creep modulus at 60°C with
gyratory compactor, ¢) Creep modulus at 20°C with Marshall Method, d) Creep modulus at 60°C with

Marshall Method.

The results indicate that adding rubber to the control mixture increases the creep modulus for the mix
containing 0.25% rubber. However, mixtures with 0.5% and 0.75% rubber show a reduction in creep modulus
compared to the control. Additionally, creep modulus decreases with increasing temperature. At both 20°C
and 60°C, the samples with 0.25% rubber, compacted using the Gyratory Compactor, exhibited the highest
creep modulus values, while the lowest values were observed in the samples with 0.75% rubber. Furthermore,
a46% and 70% increase in creep modulus was noted for samples containing 0.25% of rubber, compacted with
the Gyratory Compactor and the Marshall Method, respectively. The reduction in stiffness for mixtures with
higher rubber content may be attributed to the weak bond between the bituminous binder and the rubber
particles. For all rubber percentages, the stiffness decreases with increasing temperature, showing an optimum
at 0.25% rubber. This behavior can be explained by the elastic properties of rubber, which enhances the
elasticity of the bituminous mix. Additionally, the temperature sensitivity of the bituminous binder, which
becomes less stiff and viscous as temperature rises, contributes to the mixture’s improved resistance to
permanent deformations.

4.1.3 Creep compliance

In this study, characterizing the viscoelastic behavior of the mixtures requires determining their creep
compliance, which is a crucial parameter in creep testing. Creep compliance, represented as D(t), is the
reciprocal of the creep modulus modulus. It is computed by dividing the axial deformation by the applied
stress.

D(t)zs_ (16)

Where D (1) is the creep compliance at any time t (1/MPa), €7 is the axial deformation at any time t, and o
is the axial constant stress (MPa). Figure 5 illustrates the change in creep compliance over one hour of loading
for both conventional and modified asphalt mixtures, as a function of time, at medium (20°C) and high (60°C)
temperatures. The mixtures include varying amounts of rubber and were compacted using both the gyratory
compactor and Marshall method.
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Figure 5. Creep compliance at 20°C and 60°C with gyratory compactor and Marshall Method for
control and modified mixtures: a) Creep modulus at 20°C with gyratory compactor, b) Creep modulus at
60°C with gyratory compactor, ¢) Creep modulus at 20°C with Marshall Method, d) Creep modulus at 60°C
with Marshall Method.

The results shown in Figure 5 indicate that the addition of rubber to asphalt mixtures reduces the creep
compliance values. At medium temperature, the creep compliance decreases for both compaction methods,
leading to improved resistance to permanent deformations (rutting) in the mixtures. Additionally, the creep
compliance values are higher for samples compacted using the Marshall method compared to those compacted
with the gyratory compactor. At 20°C and 60°C, samples compacted with the gyratory compactor containing
0.25% rubber show a decrease in creep compliance by approximately 15% and 31%, respectively. In contrast,
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mixtures containing 0.5% and 0.75% rubber exhibit a notable increase in creep compliance. For the samples
compacted using the Marshall method, similar trends in creep compliance were observed as with the gyratory
compactor, with a decrease of about 16% and 41% at 20°C and 60°C, respectively, for the mixture containing
0.25% rubber compared to the control mixture. At 60°C, a significant increase in creep compliance was noted
for the mixture containing 0.75% rubber, relative to the control mixture. These findings are consistent with the
results of deformation and stiffness observed earlier.

4.2 Artificial Neural Network (ANN)

In this study, ANN and ANFIS model was developed to creep modulus (Y1) and creep Compliance (Y?2) of
modified asphalt mixtures, using Matlab. Table 4 presents the inputs and targets used in ANN and ANFIS
modelling.

Table 3. Inputs and targets used in ANFIS modelling.

Rubber content. X1
Inputs ) i -

Axial micro-deformation (%o). X2
Targets Creep modul.us. Y1

Creep Compilance. Y2

To identify the most suitable ANN model, the process involves two primary steps: selecting the input
parameters and determining the optimal number of nodes in the hidden layer. First, the appropriate input
parameters for evaluating Y1 and Y2 were chosen by training ANN models based on the empirical rule
proposed by Kanellopoulos and Wilkinson (1997). According to their findings, the optimal number of nodes
in a single hidden layer is approximately twice the number of input parameters. Subsequently, ANN models
were trained using various combinations of input parameters, with the number of nodes in the hidden layer
fixed according to this empirical rule. In the second step, the optimal number of nodes for evaluating. Y1 and
Y2 was determined by minimizing the Mean Square Error (MSE) and maximizing the correlation coefficient
(R) for the validation data. While numerous studies propose different empirical methods for identifying the
optimal number of hidden layers and nodes, the trial-and-error method remains the most accurate and effective,
despite being time-intensive (Shahabian, Elachachi, and Breysse, 2014).

At this stage, the trial-and-error approach was applied by varying the network architecture and calculating
the correlation coefficient and MSE for each configuration to identify the best model. A single hidden layer
with 0—10 nodes was explored, and the optimal performance was achieved with 7 neurons in the hidden layer,
resulting in a network structure of 2-7-2. It is worth noting that the tan-sigmoid function served as the transfer
function for both layers in the optimal ANN model. Figures 8 to 11 illustrate the relationship between measured
(target) and predicted (output) values for Y1 and Y2 using both the Gyratory Compactor and Marshall Method.
These figures demonstrate a strong correlation between training and validation data, with R=0.976 for Y1 and
R=0.984 for Y2 using the Gyratory Compactor. Similarly, the Marshall Method yielded high-performance
results with R=0.961 for Y1 and R=0.950 for Y2. These results indicate that the proposed ANN model delivers
high performance, with predictions closely aligned with experimental outcomes, further validating its
effectiveness.
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Figure 6. Relation between predicted and measured Y1 based on Gyratory compactor using ANN.
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4.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

In this study, an ANFIS model was developed to creep modulus (Y1) and creep Compliance (Y2) of modified
asphalt mixtures, using ANFIS interface within matlab software. Table 4 presents the inputs and targets used

in ANFIS modelling. Figure 12 presents the architecture of the ANFIS model with inputs and outputs
parameters.

input inputmf e outputmf output

Figure 10. Network architecture of ANFIS modelling.

Figure 13, Figure 14, Figure 15, and Figure 16 illustrate the relation between measured (target) and predicted
(output) Y1 and Y2 based on both Gyratory compactor and Marshall method. From the Figures, we notice that
there is a good correlation coefficient in both training and validation data with, R= 0, 9927 for Y1 and R =
0.9962 for Y2 based on Gyratory compactor. Furthermore, the findings indicated a high performance results
in Marshall method with, R= 0, 9993 for Y1 and R = 0.9977 for Y2. The latter indicated that the proposed
ANFIS model in this study give high performance results, and closer to the experimental ones.
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Figure 11. Relation between predicted and measured Y1 based on Gyratory compactor using ANFIS.
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To identify the optimal machine learning model, the process begins with selecting input parameters that
significantly influence the target values. The second step involves determining the most suitable machine
learning method. Initially, both ANN and ANFIS models were evaluated for predicting Y1 and Y2 based on
four statistical performance metrics. Table 5 summarizes the performance of each model using the selected
optimal input parameters during the training and validation phases. The four metrics used to compare the
models were Mean Square Error (MSE), Root Mean Square Error (RMSE), the coefficient of determination
(R2), and the Pearson correlation coefficient (R). The dataset was split into 80% for training and 20% for
validation. As shown in Table 5, the machine learning methods were applied to model the target values, with
their parameters fixed and evaluated based on the performance metrics to determine the best model. For the
ANN method, the metrics ranged as follows: MSE (0.1948 to 16.8239), RMSE (0.4414 to 4.1017), R (0.9086
to 0.9993), and R2 (0.8256 to 0.9987). Similarly, for the ANFIS model, the results were MSE (0.0367 to
11.5213), RMSE (0.1915 to 3.3943), RRR (0.9916 to 0.9999), and R2R"2R2 (0.9833 to 0.9998). The findings
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indicate that the ANFIS model achieved the best performance, demonstrating the highest accuracy in predicting
Y1 and Y2 during both the training and validation phases for the Gyratory Compactor and Marshall methods.
The ANN model ranked second, providing acceptable accuracy but slightly lower than ANFIS. These results
highlight the superior performance of the ANFIS model for this application.

Table 4. Performance indicators values of the machine learning models.

ANN ANFIS

Data MSE RMSE R R2 MSE RMSE R R2
Train 15171 1.2317 0.9868 0.9737 1.3278 1.1523  0.9916 0.9833
Y1 Validation 8.8762 2.9793 0.9581 0.9180 0.0415 0.2037  0.9999 0.9998
Gyratory All 2.8968 1.7020 0.9764 0.9535 1.0486 1.0240 0.9927 0.9855
compactor Train 16.8239 4.1017 0.9820 0.9643 11.4593 3.3852 0.9964 0.9929
Y2 Validation 10.5593 3.2495 0.9993 0.9987 11.2325 3.3515 0.9971 0.9942
All 15.6491 3.9559 0.9840 0.9682 11.5213 3.3943  0.9962 0.9925
Train 0.1948 0.4414 0.9953 0.9906 0.0367 0.1915  0.9999 0.9998
Y1 Validation 7.4595 2.7312 0.9585 0.9187 0.0562 0.2371  0.9989 0.9978
Marshal All 1.5570 1.2478 0.9607 0.9230 0.0474 0.2177  0.9993 0.9986
Train 0.9807 0.9903 0.9667 0.9345 0.2084 0.4565 0.9978 0.9956
Y2 Validation 3.7756 1.9431 0.9086 0.8256  0.1809 0.4253  0.9997 0.9994
All 1.5048 1.2267 0.9498 0.9021 0.2099 0.4581  0.9977 0.9954

5 Discussion

The present study revealed several key findings regarding the effect of rubber on the creep behavior of
asphalt mixtures. Firstly, it was observed that incorporating a low percentage of rubber (0.25%) significantly
improved creep modulus and reduced deformation at both 20°C and 60°C. This enhancement is attributed to
the presence of zinc oxide in the rubber, which acts as a particle-agglomerating agent, strengthening the bond
between the mixture components. However, higher percentages of rubber (0.5% and 0.75%) led to a decrease
in creep modulus and an increase in deformation, likely due to the presence of unabsorbed rubber particles that
disrupt the binder continuity. Secondly, the study demonstrated that the compaction method significantly
influenced the creep behavior. Samples compacted with the gyratory compactor exhibited lower axial
deformations and higher creep modulus compared to those compacted with the Marshall Method. Finally, the
machine learning models, particularly the ANFIS model, demonstrated excellent predictive capabilities for
creep modulus and creep compliance. The ANFIS model outperformed the ANN model in terms of accuracy
and precision, providing a valuable tool for engineers to predict the performance of rubber modified asphalt
mixtures without the need for extensive laboratory testing. The findings of this study are consistent with
previous research that has shown that incorporating low percentages of certain additives can enhance the
performance of asphalt mixtures. For example, studies on the use of polyethylene terephthalate (PET) have
demonstrated improvements in fatigue behavior and reductions in stiffness [11]. Similarly, studies on the use
of waste plastic and rubber have shown increases in strength and resistance to permanent deformation [12].
However, the specific effects and optimal dosages of additives can vary depending on the type of additive, the
compaction method, and the testing conditions.

The findings of this study have significant implications for the design and construction of sustainable
pavements. By utilizing rubber, a waste material, as a modifier for asphalt mixtures, we can reduce
environmental pollution and promote the circular economy. The optimal dosage of rubber, as identified in this
study, can be used to optimize mixture design and enhance pavement performance. Furthermore, the developed
machine learning models can be used as a predictive tool to assist engineers in selecting the most suitable
mixture design for specific traffic and environmental conditions. One of the strengths of this study is the
comprehensive investigation of the effect of rubber on the creep behavior of asphalt mixtures, considering
different percentages of rubber, two compaction methods, and two temperature levels. Additionally, the use of
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advanced machine learning techniques, such as ANFIS, provides a robust framework for predicting the
performance of these mixtures. However, there are also some limitations to this study.

The study focused on a limited range of rubber percentages. Further research is needed to investigate a
wider range of percentages and to explore the effects of different types of rubber. Additionally, the study only
considered two compaction methods. Future research could investigate the effects of other compaction
methods, such as roller compaction, on the creep behavior of modified asphalt mixtures. Finally, this study
demonstrates that incorporating a low percentage of rubber (0.25%) into asphalt mixtures can significantly
enhance their creep resistance and improve their overall performance. The ANFIS model has proven to be a
valuable tool for predicting the creep behavior of these mixtures, offering a more efficient and accurate
approach compared to traditional methods. Future research should focus on investigating the long-term
performance of rubber modified asphalt mixtures in real-world conditions, considering factors such as traffic
loading, environmental aging, and moisture susceptibility. Additionally, exploring the use of other waste
materials and developing more sophisticated machine learning models could further advance the field of
sustainable pavement engineering.

6 Conclusion

This study investigated the influence of rubber on the creep behavior of asphalt mixtures, aiming to enhance
their mechanical performance while promoting environmental sustainability. The findings demonstrate that
incorporating a low percentage of rubber (0.25%) can significantly enhance creep resistance, as evidenced by
increased creep modulus and reduced deformation at both 20°C and 60°C. This improvement is attributed to
the strengthening effect of the rubber on the binder-aggregate interface. However, higher percentages of rubber
(0.5% and 0.75%) led to a decrease in creep modulus and an increase in deformation, indicating potential
detrimental effects on mixture performance. Furthermore, the study highlights the significant influence of
compaction methods on the creep behavior of asphalt mixtures. Samples compacted with the gyratory
compactor exhibited superior creep resistance (lower deformations and higher stiffness) compared to those
compacted with the Marshall Method. This finding emphasizes the critical role of compaction method in
determining the creep behavior of modified asphalt mixtures. The study successfully demonstrated the
effectiveness of machine learning techniques, particularly the ANFIS model, in predicting creep modulus and
compliance. The high accuracy and precision of the ANFIS model offer a valuable tool for engineers to
optimize mixture design and predict pavement performance more efficiently. Based on these findings, it can
be concluded that 0.25% rubber content is the most effective in improving creep resistance while maintaining
desirable mechanical properties. Gyratory compaction generally resulted in superior creep performance
compared to Marshall compaction. However, the choice of compaction method should be carefully considered
based on specific project requirements and available equipment. The developed ANFIS model provides a
powerful tool for optimizing mixture design, predicting pavement performance, and reducing the reliance on
extensive laboratory testing. Future research should focus on investigating the long-term performance of
rubber modified asphalt mixtures in real-world conditions, considering factors such as traffic loading,
environmental aging, and moisture susceptibility. Exploring the use of different types of rubber and other waste
materials as modifiers for asphalt mixtures is also crucial. Furthermore, developing more sophisticated
machine learning models, incorporating additional parameters and considering the effects of long-term aging
and environmental factors, can further advance the field of sustainable pavement engineering.
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